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ON FOURIER SERIES
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(Budapest)

1. Let us introduce the following mnotations. Let C,. denote the
Banach space of continuous real-valued functions of period 2r provided

with the usual uniform norm and let L, (I < p < o) be the Banach
space of real-valued functions f of period 2r for which |f|? is Lebesgue
integrable over the segment [0, 2r]. Let % be a real parameter and let

Aj, and V, be operators-on Co (Lfn) defined by the formulas -

) + I
(Bpf)(x) ==L 2R,

+.h
(vif)(w) =TS0,

Let, further, R be a natural integer and let

(‘)R(f; 8) (LP) = sup ”( h) f“c2 (LP> (8 = O)

<38

be the R-th C,, (Lfﬂ) modulus of smoothness of the function f. Finally, let

'S,,(x, f) = %’ + > (a, cos kx + b, sin kx)
k=1

denote the n-th partial sum of the trigonometric Fourier series of the
function f.

2. Let fe Cyrand R be a fixed uatural integer. It is a well known
inequality due to H. Lebesgue and ). Jackson that*

* C() is a non-negative, finite constant depending on the parameters lying in the
brackets, i
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n

If = Sullloy, < C(R) log nep (f: 5)02 W O[QR (f"l)c ]

(n=1,2,...). In 1941 s. M. NIROLSKIT [8] showed that C(1) = ]

2

is the optimal value of C(1). How does C(R) behave for an arbitrary R?

This question was open for a long time and even the estimation C(R) =
= 0(1) was not known until 1971 when the author [6] and independently
of him v. v. Zux [11] solved this problem. Actually, the best value of
C(R) can be defined easily by the following way. Denoting by [ the
identity operator let us remark that

Ay +Vy=1
A, +V)E=1

and therefore
that is
AR R b rekes i
h + V],Z E A};Vh = 1.

k=0

Let us choose now a trigonometric polynomial H, of degree at most #

such that
”f - H’L”CZRZ En(f)

where E,(f) denotes the measure of best approximation in C, of f by
trigonometric polynomials of degree at most #. Then we obviously have

Sn(f) —f: Sﬂ(f_ Hn) - (f_ Hﬂ> i

R—1
+ V.S, (2} (f) AT — H,,)) — (f — H,).
But
S.(AF H,) = AFH, = AXH, — f) + AXf
and thus
1S (AF Ho) oy S Eulf) + 0x(f5 Ay,
Let now 4 = % By virtue of some result due to s. BErRNSTEIN. [1] and

W. ROGOSINSKI [9] we have for every g'e Co,

IVSa(@lley. = Cllgllesy (n=12...)

Therefore

R—1

IV2Sa(30 (RAEVER(f — H, e, S C2F — DE,(f) (=1, 2, ...).

W b= "%
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Applying now the Jackson theorem

E,(f) :0[%(]‘;%]0 ] m=12 ...
we obtain
(1) S~ = Sua%) + 0feslfi ) ] (=12 ...).

From this we immediately get the following

IS.9) = fley, < % tog mo(fiT) +Oforlsig] | =12

2 Con

and therefore C(R) = iz . For every » it is easy construct a’saw-tooth’
ki3

function fe C, such that

R e i M T

w2 n 7

and thus C(R) = £ .

"2
3. By the way we have got a very important expression (1) for the
deviation S,(f) from the function fe Csy. This formula has a lot of
applications, some of which give entirely new results for Fourier series.
Its first obvious comsequence in the following
THEOREM 1. Let fe Con. Then

17 = Sl Mlegr nza O
if and only if for every natural tnteger R

wg(Sa(f) S)CQﬂ”:)o 0
8—-0

The necessity follows from the inequality
or(Su(f) 5 Dege £ ISalf) — Flleg, + @rl/3 Blcon

and the sufficiency from (1).
Tet us turn to an another application of (1). ¢. H. HARDY and
7. B. LIITLEWOOD (2] have shown that if fe LZ and wy(f; S)Lp =
.21

= O(n—*) where ap > 1 then f = f, almost everywhere with f; € Lipa —

—% and therefore

(%) — Su(x, f)l =0(10g " n—H;) =12 ...
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uniformly almost everywhere. This result can be sharpened and generali-
zed with the aid of the relation (1) as follows :

THEOREM 2. Let fe Ll and for some fixed natural integer R let

wg(f; 8) p = O(n=*) O<as=R ap>1)

Then

m@—&Mandi”ﬂ (%3l Ze s

uniformly almost everywhere.
We would like to emphasize that the logarithmic factor is absent in
this latter estimation.

Let now fe Cpr and wp(f; 8) , = 0(8) (8§ = 0) for some fixed R.

I
It is a classical result that in this case S,(f) converges uniformly towards
f for # — oo. With the aid of (1) one can find the exact value of the
speed of convergence of S,(f) to f. Naniely, we have the following.
THEOREM 3. If fe Co and owgy(f; 8),] =0(3) (3 —-0) for some
2 LY f
fixed natural integer R then

If = Su(f)lle,, = Olllog mR(fJ l)

.

{ 1
, . (‘OR‘fJ ¥) ]
N 1 'CZWV

Cox

(=1, 2, ...) and this estimate cannot be itmproved.

We shall now define the class of piecewise R momnotonic functions.
The function fe Cy, is said to be piecewise R (=1,2, ... but fixed)
monotonic if there exists a partition o(f): — Tt =2, < %, < ... <2ay=mn
of the segment [—mn, n]such that the expression (AXf)(x) does not change
his sign whenever § 2 0, (v, & + R3) C (x;, %i41) ¢ =0, 1, ..., N —1).

Applying (1) one can prove the following statement.

THEOREM 4. Let R be a fixed natural integer and let fe Cyp be
piecewise R + 1 monotonic. In this case the logavithmic factor in the Lebes-
gue-Jackson estimate can be omitted, that s

1

If = Sulfloge = Onfos{fi 7] | tm=1,2 ...).
" Con

4. Now we turn to the nicest and most important application of the
formula (1). We shall generalize the classical Dini-Lipschitz (more preci-
sely Dini-Lipschitz-Lebesgue) convergence test, which says that if fe Cy,
and

If(x) —fI =0 (I —y| —0)

e
llog [¥ — ylf

i
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5

uniformly in x and y then the Fourier series of f converges uniformly
towards f. Let us say that the function f satisfies the one-sided Dini-Lip-

schitz condition if

ely — #)
[log (y — #)

(2) fx) —fly) 2 —

where ¢(8) 2 0 and ¢(8) =0 for & — +0.

TUROREM 5. If f € Cy satisfies the one-sided Dini-Lipschitz condition
then the Fourier sevies of f comverges uniformly towards f and moreover we
have the following estimate :

|v—&ﬁm%=0H§3ﬁEEw+sGﬂ (m=1,2 ..)
4

Of course, this statement is more general than the Dini-Lipschitz
theorem, but it can be easily checked that it is more general than the
Jordan-Dirichlet convergence test as well. This fact is interesting by
itself since it is well known that the Dini-Lipschitz and the Jordan-

Dirichlet convergence theorems are not comparable.

To prove this theorem let us apply (1) with R = 1. By virtue of it
we have to estimate only S,(A.f) since f is continuous. We have by the

"
Dirichlet formula

Sub, ) = (8, )D,

7" #"

where * denotes the convolution and

is the n-th Dirichlet kernel. Hence

[ T ™
=2 el
” * n

A f+ 251 *D, —

S”(Aff) =

"
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and by virtue of (2) we have

(2]
n

k1t

log —
7

S48 N1 < (8 HxID,lI+

" 11

= 18,)% 1D +0[¢[7]]

Therefore

] —

1Su(%, 8,7)]

"

| 7 =700 # 1T, Dl = 1PN +0e (4] 5

”

L3

<Ly fneir, De 4 4 O[]

where TE D¢ =D, (t — 3‘-). From this we obtain

n

3

™

® S A= 0ol Dt e )]

n -T n
=T

since it can be easily computed that

D[t —Z|+D,t)| = %
[Duft = 2+ D] = 0 [755)
Theorem 5 follows immediately from (3).

The condition (2) can be generalized by th i
suppose that for some R(= 2, 3g, o) s yahe R A, iR

ARF > — e(3)
of = | log 8|

and we can obtain by similar arguments that

4 If - sn<f>|\czﬂ=0[wl (f,-l)c, +e(£)] (10N 1y

n n

The results mentioned in this part have also some applications to

some well known results. R. SALEM
following LEM and A. ZYGMUND [10] have proved the

[62]
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sarorEM 6. Let f € Cox N Lipe (0<a<1) and let f be of mono-
tonic type, that is 3C = C(f) such that the Sunction f(x) -+ C(x) ts monotonic
on the real axis. In this case we have

If — SulPlley, = O™ (e =1, 2, -o)

"This follows immediately from Theorem 5. Unfortunately, for o = 1
it is not true. At the same time, however, we can obtain from (4) the
following theorem.

rumorEM 7. Let feC, N Lip 1 and let f be of comvex type that 1s
3C = C(f) such that the function f(x) + Cais convex. Then we have

If—sm=0(y) ®=12 )

Let mnow felLl. It is a classical result of G. H. HARDY and

J. E. LITTELWOOD [3] that for a fixed point x ome can find a function
e L such that

flx + 8) — flA)] = o ] @-0

|tog] 31|

and S,(x, f) diverges for n — . At the same time, however, 8. IZUMI
and @ suNoucH1 [4] have proved that if /€ L! and

17(5) = £ = o v, &~ %)

1
llog |y — zll)

then S,(#, f) —f(#) for n — 0.
The Tzumi-Sunouchi’s theorem also has a one-sided analogue:

curorEM 8. Let fe L) and let x be a Lebesgue point of the fumnc-

tion f. If

Hy) —flo) 2 — 2L (y<2;9 2%

[tog(z—)|

where =(8) =z 0 and =(3) —0 for 38— 10, then S, (%, f) —f(x) for m—>cO.

This theorem can be proved by localization of the main relation (1)
and by the arguments used in the proof of Theorem 5. !

Finally we remark that some of our results mentioned here were publis-

hed in our papers [5] — [7]
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