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In the exploitation of oil reservoirs appear hydrodinamic systems of
flow which are constituted of two zones, where the flow is single phase in
a zone and two phase in another. The mathematical model of such a
flow has been studied in the papers (1], [2], and [3]. In this paper we
give a method for determining a quasi-analytic solution.

1. Consider the equation

P _ )%,
() o T G

in a region R:0 < x <1, 0 <t < T where

a* for 0 <<l
X(x)—{bz for I<x<1

and one requires the continuous and positive solution in R subject to the
conditions

©) p(x, 0) = f(%), 0<x<l,
3) axb o &), (R I s g:(t), {>0,
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where %, and k, may be 0 or 1,
5} i)
CR 2| =FWpL AL
% |x=140 0% |x=1—0
f 2y, g, and F being continuous functions such that F(, p) > 0 for

t>0and p >

In order to find an approximate solution of the above problem,
we propose a method based on on the discretization of the equation
(1) and the approximation of the function F(, ) by a step function. We
shall begin the investigation of this problem with a particular case.

2. We consider the condition (4) of the form

—F@) % ;

O |x=1—0

ap
5 i’}
( ) 0% |x=1+0

and we suppose that the problems (1), (2), (3) and (5) have sufficiently
smooth solution in the regions D, : 0 < x <[, O <t < Tand Dy:l<x <1,
0 <t < T. In order to determme an approximate quasi- analytlc solution
of this problem, we consider the lines x =%, + =0, 1, ..., n +m,

1 .

where x;, — b, h=—~,1=0, 1, ,n and x; = x, + ik for + = n'4 1,
n

ol y P

and m = bl%

w2 .. =
m (4
The solution of the above problem on the lines ¥ = x; will be noted

by p.(t), that is p;(t) = p(x, 2).

For the discretization of the equation (1) when one takes & = &, = 0,

1
., n 4 m where k& = -

in the conditions (3) we approximate the derivative ? on the lines

x=%,1=12 ..., n—1L n+1 ..., n+4m—1 by the divided dif-

ference, that is

a*p _ pia() = 2pi(0) + piga () hi 0%
Py x:x'_— }l% == H Dt x=ai.~ Xi-1 < ai <xb‘l’1;
where
o — 1

{h for 1=1, 2,
kR for 1=n+1, n+2 ...,0+m—1

In the case &, = 1, on the line x = x; one uses the formula [4]

02p
6 Py - T i
() 042 |x=z, II}LZ[ Shaxxo 2?1()—}—?()-1—?3()
2 a0 -
132h o sl 0 < & <y,
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and for k, =1 at x = %,4,_ the analogue formula

ap op a0 \LE
O 2 i [P = Zrenctl) gl el
4
="V k 6 P > xn—{—m—%} < Em—l—'m;'l <« l'
132 0x* |x=tntm—1

In this way we derive from the equation (1) the following system of
ordinary differential equations.

I

pt=(t— 2m) 5 (= 200t pot hupd + 1= 1 —5)h]an+ R

11

b= L (py — 2y + Pa) + Ry

h?

p:;—l - %:(Pn—z e Zj)n~1 + Pn) + R_n—l

b2
(8) P:I-I—l = 'h—z (P,. . 2?11«]—1 + 157;+2) + RM—H
b2 I
P;;+m——2 = ]_2 (pn-&—m—S - 2}‘)114—»:—2 + j)u+m—l) + Ru—,Lm—Z
13
9
p:n+m—l = (1 - Hk J ]2( an tm—1 + Pn+m 2 + kz?n+m 3)
6h
k RH n—
{1 (1= B ) + R
where b’ = ﬁ . The initial condition leads us to the conditions
k
9) 2:(0) = flx), =12 ..., 8+ n—1
In order to eliminate the unknown function p,(f) from the system (8) we
use the condition (5). For this purpose we express the derivative S_j) on
;”2

the lines ¥ = #,_, and x = x,41 by a numerical differentiation formula
which contains some functions p;(f) and the derivatives

%
. 0%

%
z=2|—0 ’ dx

a=i10
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3. In the following we shall determine such a formula.

Let f(x) be a function belonging to the class Cfy, ). Subdivide
the interval (x,, #,) into equal parts of length % by means of the points
;cl, %, %y For the function f(x) we determine a formula of the following
orm:

(10)  f"(x%:) = Af'(xo) + Bof(xo) + B, f(%,) 4 Baf(%2) + Bsf(xs) + R,

using the method from the paper [6]. Consider the function ¢ defined on
[%e %] by the equations o(%) = () for x € [xy, %), i=1, 2 3,
where the functions ¢ (¥) are the solution of certain two point boundary
value problems of differential equations '

(11) V(%) =0, i =1, 2, 3.
From the formula

£

(12) (o () fx) dx =

L)

%

SoTef— STt S — "N+ (e (s

3
i=1
J

s /Y

imposing on the functions ¢,(x) the following conditions

P1(%0) = 9i(%0) =0
01(%) = @a(%1), 91(%1) = z(%1)

(13) Pa(ts) = Pa(%2),  @a(%2) = Ps(%a),  @3(%a) = 3 (%)
@a(%3) = @a(¥a) = y(%) = 0 ph

and considering o™ (x) = 0, we obtain the following formula

(14) o1 (wo)f"(x0) + [01" () — o () fix) +
+ [oi(x) — @b(x) 1" () + [0 (%) — 95" (%2) [/ () +

o (lfr) — i (zalf(xe) = — | o V().
For the full determination of the formula (14) it is necessary to solve the
problems (11), (13). For this purpose we observe that the polynomials
(g — #)°

py(¥) = =

15 _ (s — 2P (#2 — #)®
15) ol =g, s

_ (s — P (%2 — #)° (v, — )P
o.(%) = 31 + A Slx)‘_iszl—x?x—)ﬁ‘la(xl_x)-
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satisfy to the equations (11) and'to the conditions (13) attached at the
points x,, %, X3 From the fact that the function ¢, satisfies the conditions
(18) at the point x, we obtain for the determination of the parameters
A1, Ay and Ay the system:
27h? + 8342 4+ 62y =0
Of2 - ANJE 4 W2 4 220 =0

which has the solutions

9
(16) Ay =9 + 22
Ag = A2

Substituting (16) into (15) we obtain

e (8 (= 2P (s — 2 B
(17) euln) = 2 (2 _+x) =2 (9 4 20) P MR — )

R G Nl S ) (s 20
?a{%) = 31 (2+7\) 31

and the formula (14) becomes

(1) ) = 58 ) + (5 + A S — @+ 20 +

Rl
Ah?
10+ 2nflx) — flm)| + R,

where

g

(19) R = 71, S (%)™ (x)dx.

EYS

Th> choice of the parameter 2 will be made by the reasons of error estima-
tion; therefore, the discussion of this choice is postponed to the next

section, where we find A as a root of the equation 1 + % + ZTt AL =

A
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For both roots of this equation, the function e¢(x
g > 0 for 2 € (x,,
and consequently, the formula (19) can be Wl’itttgg’l )as (%0, %s)

]

R=— /™8 {o(mir, &< n )

%o

Putting in (18) f(#) = 411 (% — %)% — %1)(x — %)

we obtain

1 ] i 9

Py S p(x)dx =2 (; ~ l] R,
and

R= 2(% = l)hzflv(g),

and also
(19) IR| < 2( ? s 1) M.,
where

M, » max| fV(x)].

[ %0, %3]

The smaller coefficient % —1 in (19') is obtained for the root rA=— 9 -+ V103
s » 2

namely
|R| < 4M )2

4, Now we shall use the numerical differentiation formula, just deter-

mined, expressing the derivatives Gl and G in (1), and ob-
¥=x% 0%2 |g=x
nt-2

%2
n—1

taining in this way the following equations

20 r o Dl gy 0P
(20) D1 )\h”[ 3%

11
() on O+ Wpun +

r=!—0

+ 29 + 2X)pyms — /),,_3] + R g
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e PR R S @+ 2Np—

M2 ox

;b::+1 =

2=1—0
= . lbu»}-:!} itk R::+1

Combining these equations with those of the system (8) which contain
the function p,() and considering the condition (5), we get

@)  phl=— {E pos + |1 L4 2= ) Flpae—

(1 + By | 11 O ety
|

—2[1 —(}1+%—§)F]p,,,1+2(1 + L2 ) e -

11 a?

7 2 1 2 =)
= (1 -+ £ + i K)ﬁw—z + ﬁj’wrs} - oY T FRM—I

2 Ry — liste Ri _l___l__[(_ﬂ -+ 1)F -+ 1] Rt

pe(1 + F) TR 14 F L 2a
, b7 oF TR A
_ b qeF, (14l 2 A Fpe +
Pr (1-|—F)h2[11p” 2 ( 11 x] Pus

2% 7 b2 11F

1 2
i (F + ok Tk Tl) Pate + i ]bn+3] + Il F) Ryt1 —

b2 F 1 11 = 1 »

i R:_ ks 14+ FVR,. — —— R

o e 1+1+F(21Jr i ) U T il

If we add the equation (21) to the system (8), leaving out those which
contain the function p,(f), we obtain the following system of ordinary

differential equationas concerning the unkonwn functions p,(f), pu(t), -

j)u—l(t), Pﬁ-{—l(a); ey }‘5,,4_,,,_1(1] ¥

I

2

pr= (1= % B2 et hp) + 5|1 (1 2 gl | + Ra

ph= 2 (b — 2p0 + £3) + Rs
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(22)  proy =2
(1 4 F)pe

[E s +(1-E 25y T) poa—

117

e (1 4- % =} %-— _:T}f)"” + %f’u%] + K,y
s = (1 -i';qm[%rp“”“ _(1 i izl T i}? — ';T) Fpor +
+2 (U T+ 2= 2 Fp, . 2(F t oy o)+
+(F4 -2 ) pra+ 2 Puss| + Rons
Primr = (12 ) 22 (= 2Purns + Boincs + hupusnd I+
+2 [1 St 3 o) a6l + Russ.

The solution of this system which satisfices the initial conditions

$40) = ftn),
$00) = fUk),

’,’.:]‘ 2‘ .

f=mn-41, ..

oy —-1

o M+ — 1.

(23)

represents a system of values of the solution of the probl

(5) on the Iipes r=2x1t=12 ..., n—1, 4:3—!1—)1?,1) em (:3)’—[-{?3'; —(—3)1
Now we drop in the system (22) the remainders R; and denote by p(t)
its solution subject to the condition (23) and by v,(f) = p,(f) — p:(z)
1=12 on—=1n41 ...) m—1 + m the discretization errors.

5. For the estimation of the discretization errors we remark that

Y‘(t)'izll 2' L 71—1,P’n— 1, R (o A
tion of the system: K » %+ m — 1 represent the solu-

a?

;:_(Yl‘“z\fz'l‘Ya) + R,

’ a? 9
Y= —2(1 i k1)(-'2Y1 T Yo+ Aivs) + R,
i h?
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9
a? 2F 7F 2% v F
k > —— | — Yu-— 1'_“_‘__F = nw—2
Yn—1 1+ F)hz] 11 (s 3+( 1 11 = )\)Y 2
7F 22X F 7 2% 1
—Z(I—E_EF—F_;]Y"_]—{—Z(I+l_i+—l_l~7JY”+1—
7 22 1 2
- i AR " P £ Rn—-
( g A)Y+2+11Y+3]+ !
(24)
b2 2F 7 2% 1
! = — Y-8 — 1 = — — —| Fy,—
Tut (1+F)h”[IIY ¢ ( R BT x) Ya-2

7V 2k d) gl Mohad 7
+2(1+ﬁ+ﬁ—_x)p{"_l 2(F+)\ 11 11)Y”“Ll

1 2x 7 2
-4 (F -+ —)\- = —ﬁ T I—l} Yatz + ‘1—1Y1»+3] 4 Ruy1

7 9 b2
Yotm—1 = (1 i 1—1‘ kz) = (_ 2Yu+m—1 + Yi+m—2 + szlH—m—S) + Ru-{-m—l

h?

which satisfies the initial conditions

v0) =0, =12 ..,n—1Lxn4+1 .., n4+m—1

Considering the form of the remainders of our numerical differentiation

formulas we remark that the remainders R; in (24) are of order A2
For evaluating the solution of the system (24) subject to (25), we

use the following lemma [7].
Lemma 1. Let x = x(t) be the n-dimensional vector solution of the

Cauchy problem
ax

2 — 4@x + R()

x{to) = %,

where the elements of the matvix A(t) = (ap(t)), 1 <4, B < n and R(t) =
= (R;{1)), 1 €1 < n are continuous functions on [t,, T]. Then

§ a(t)de ! § afz) dr
(26) @Il < liwd &+ (RGN do

to
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where '

lx(#)l] = max | [|R@)|] = max [R;(],

1<ig<n 1<isn

alt) — max ["“’-“’ > ““’*‘”'} ‘

[
The coefficients of the system (24) satisfy the conditions
n+m—1

(27) Qaji + 2 laisl < 0»
s=1

SEM, SEL

i=1,2...,0—2,n+2,...,n4+m—1

. In order to satisfy the condition (27) also when 7 =% — 1 and
i =n + 1 we choose A as a root of the equation

7 27 1
1 — —_—— — =
- 11+11 A 9
In this case one obtains 1 — T 20t Y 2 (A,
!11+11 A 1+FalldF 11—]_11

1 :
— ;) — 1 - F, and the equations of the system (24) containing A become

' S a_z 2 F 2 1
Ynfl = 2 i—l 1 T FY’L—~3 "l_ YH—Z = Yﬂ——l + 1_1 1 + FYu+3]‘|" Rn-—l:
m b2l 2 F A 0 2 1
Yo+t = 111 T F fﬂ~3 1 Yu-l-l + '\[’ur+2 —" I’l‘ 1_4“_1;Y’$+3]+ Rn+1:

Hence, their coefficients satisfy the conditions

tkm—1

2
(28) a‘i—l,u—l —l" Z laﬂ-ﬂl, Sl e — 9a h
s=1 ) 1172
s#En—1,n
and
ntm—1 ohz
(29) Apyt, 041 = Z lan+1, sl = — X
s=1 11 72

s#s, ntl
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11
Considering (27, (28), (29) we obtain
( : nt+m—1 ]
(30) alt) = max za; + 25 aiy =0,
) i ss;:',lﬂ i
and according to lemma 1 we have
i
(31) @)l = { max| Ri(o) | do = it M2,

0

where M is a constant with respect to . ‘Therefore the discretization
errores v;(f) tend to zero as h tends to zero. From the valuation (81) it
results that the solution of the problems (1), (2), (8), (5) on the lines
x=x,1=1,2 ... 0—L n+ 1, .o, BA-m—1 is approximated
with the discretization error of order h® by the solution of the system

B ____;‘_;(1 sy %kl) (— 27 + P + k1 Ps)

5= 2 (F— 20 + P

he

- 2(2 F e _ 2 1 )
32 v’;— :i(— "— n— — 2 "— oy Tam— L )
(52) Po-1 =3 111+F$ s+ Pu-z— 2P 1+111+sz+3
2 F E_

%

_ = o e 1 -
' . il T 9 ) L
ﬁn+1 - hz(ll 1+ Fpn 3 Pn-l 1 + pn+2 l 1T Fpn+3)

- b2 9 = - —
pn—%/m#l == ;2 (1 - l—lkz) (" 2P4L+m—1 + pn.—'rmfz + kz Pn#—m-a)

which satsifies to the initial contitions

$:(0) = f(zh), i=1,2 ..., n—1
(33)
$;00) = flx, + 7). i =1, 2, semsntt— 1

Remark I. In order to simplify, we shall use the following matrix
notation
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Hence, the system (32) and the conditions (33) can be written as where M and N are constants with tespect to 4, and therefore va(t) tends
' to zero as 4 tends to zero.

i

O =AP#) +H ®) Remark 2. If, from ‘the bouhdary conditions otie obtains the deriva-

(34) 0 =fo tive %’ at one of the ends of [0, 1], then, using the formulas

oy

In order to obtain an apptroximation for the function 2.(8) we write the
condition (5) as - 3 :

. | R, (l
3,0 :_[ M (1 — f—’l‘J kl] &) 1528
1 _ T b oy L op 5all) -- 17 :
B9 5 Pul)—2u0)1= 29 (p,) — po_st74 22| _ R | & 0 : ! : e
k +( o ) T = 2 042 e =, ) 2 0% |y J L an Hp) — : R(t) = || Ru—1(2) fo={f8), f2h), ..., fFlln—=1)h1, f(xy+R), .., [, + (m DAL}
Pl)=|Zuat) |; 0 = ; Ry a(t)
Where~ n s (xn—l’ x,,), Ny € (xn' x"—l)' I p”.—H(t> b2 1 ’ 67 2 (t) 3
Denoting S =7 we have | 5: © ;;[1 2 ( T 2] &2 Roym—1(t) . 0
Vet . n4+m—1 0 !
. 2 { 0 0 0
_ 2 2—1—3k)ka2(1—g/61)00--- 0 0
(36) PaOT +7F O] = pusalt) + 1F()po_s(t) — R,(0), (1= ) [ — ) il o 0 0
| ) z — 2q2 a? 00 ... 0 0 0 v 0 " 0

where & 0 0 0...0 0 0

~ . 2 * 22 Y420, ., 0 0 0

' LR i 1 52p 0 a .
(36) Bl =2 (Gl Tl — - 2] )
2 |y, 7 0% |y—m, o T ; 0 0 0
| 0 ORORS ol 0 @ a® 0 0 0...0
Dropping the term R,(?) in (36) and using the known approximative values 0 0 242 0 0 0
for p,_4(¢) and Pn+1(f) we obtain the following equation 0 0 O Jnpli2elE . 508 0 T 0...0
/- 0 0 11(1 + F) (t+
- 1 = ' . ! 272 0 0 0

37 Pullt) = ———— [, ((8) +7F (¢ w—1(£) ], 20"°F . — Ops 2 - 0...0 _
7) Pull) = 5y sl -+ 1) B, () | . . 0.0 010 i B T gl \

‘ : : . ’ ” 1 0 0 0
whose solution represents an approximation for Pu(t). For the purpose . 0 0 0 00... 0 0 b — 2b L 0
of evaluating the error of this approximation we subtract (37) from (36)
and we denote R el > b B2

(t) — Bult) = v.(8). 0 0 & ‘ » 9 ' _9-J
In this way we obtain the equation " o it 0 0 0 4

i Er P
Yult) = L+ 7 B [rassl®) + 7F(0) vaa(t)] + 1+ F

: i (41) (P*)' = A,P* + H,
“onsidering that [Yat1()] and IYu-1(8)] < MA% and that I({) 20 for 0 < - L 44
St < T we have with the condition

0] < (Mt + Ny, (42) P*0) = fo,
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where M and N are constants with respect to 4, and therefore v,(f) tends
to zero as A tends to zero.

Remark 2. If, from the boundary conditions one obtains the deriva-

tive %@ at one of the ends of [0, 1], then, using the formulas
t

fo(t) = ﬁl(t) e h@ ’ ﬁu-km(t) o ;n«l-m-l(t) + h_(")__ﬁ ]

Ox| x=0 O%|x=n-+m

one obtain the approximative values with the errors of order k2 for the
functions poft) and p,m()-

8. We now give a procedure for finding an approximative solution for
the problem (1)—(4). First of all, we discretizate thefequation (1) and the
condition (4) as above, obtaining such a system of ordinary differential
equations with initial conditions which has the matrix form

(38) Pt) = ApgpnPll) + HE),

with initial condition
(39) P(0) = fo.

To determine p,(f) we shall consider the equation

(40) panilt) — Pult) = #1712, Pln(t)][ﬁ,,(é) — pu-1(®) ).

If [F[t, p,(l)] sold be known, then the solution of the problem (38), (39)
would represent the solution of the problem (1) —(4) on the lines x = x;
with a discretization error of order /2. But since P,(t) is unknown, we shall
substitute the function F(i, p(f)] by a step function. To this purpose we
subdivide the interval [0, 7'] into equal parts of length Af by means of the
points £y =10, Iy, &5 ..., ty = T and denote

Foa) = Flt bally-)) s=1 2, ..., N.

We replace in (38) F[t, p,(t)] by Fe_y () for ¢ < [t,—1, ts]. The approxima-
tive solution of the system (38)is performed step by step beginning with
the interval [0, #,], since  (0) is done from the initial condition. In fact
on the interval [0, #;] one solves the system

(41) (P¥) = AP + H,

with the condition

(42) R L PHO) = fo,
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and the function p,(¢) is obtained from the equation

(43) Priv1 — Pi = 1F(, p)(ps — Pu 1)

Remark 8. If the vectors H(f) and f, have all their components non-
negative, then the solution of the system (41) with the condition (42)
is a vector which has non-negative components, that is p,(¢) =0 for
te[0, ), i=12 ..,a—Lmt+l ..., %+ m—1 Indeed, from
the assumption f(th) =0, 1 =1, 2, ..., » — 1, »n and f(x, + jk) =0,
=12 ..., m—1, follows F#)=0for¢ < [0, {;]. In this case the
elements of the matrx Ag(f) satisfy the condition 1° and 2° from -the
theorem 1 of [4]. According to this theorem, the system (41) is of mono-
tonic type on the interval [0, #,] and from this, it follows the remark 3.

'he condition that the vector H(f) and f, are to be non-negative, is
fulfilled from the technical point of view.

Remark 4. If the functions p,,; and p,_; are non-negative for
te [0, t,] then under a certain assumption, the equation (43) has a unique
non-negative solution on [0, #].

Writing the equation (43) as

¥y rE(L pE)
T o F(L )

(44) =
and introducing the notation

Qu) = P+ Fi gl
I+ 7’F(tJ u)

the equation (43) becomes

P = Q(p3)

Let U be the space of the continuous, non-negative on [0, #,] function with

norm ||#|| = max u(f)|. From the definition of the operator £ one observe
t=[0,¢,]

that if w € U then Q(u) € U. We shall show that the operator Q is a
contraction operator on the space U. We have

Py (L — #a41)

[1+4 F{tu) -:*H—l][l + Fpy ) [ ( ) ( )

Qfu) — Q(v)

Since p,_1(t)== 0, for ¢ = [0, #] and for u =0, we have F(, u)= 0 and

(L4 F(t, wpnalll +F@ v)paa]l =1
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and consequently
Q@) — Q)| = 731 — bl w) — B, o)
1f
|[F(t, w) — F(t, v)| < Llu — v],
for all w, v € U and ¢ € [0, ;] then
(45) 11Qu) — Q)= 7L]Ipn ll |11 — piall 1w — 2l
from (45) it follows that if

1

(46) L <— —
Pllpn 111111 — pi 4l

then, the operator Q is a contraction operator on the space U. From the,
contraction mapping principle follows that if the condition (46) is fulfiled
then the equation (41) has a unique solution in U.

The property of the function p,(f) to be non-negative on [0, £,]
keeps its validity on each interval [¢;_y, 4], 1 =1, 2, ..., N, since for
each of these interval the initial functions and the vector H(f) are non-
negative.

In order to determine the error vector I'\(f) = P(t) — P*(f) and
Y(t) = p,(0) — ps (), t = [0, ¢,] we subtract (41) and (42) from (38)
and (39) and also (43) from (40), obtaining thus |
(47) (P — P*) = Awppy P — Ar,P",

v

and

(48) (Par1 —ph—1) — (bw— P3) =7[F(t, p)(bn—Pu) =@ p3) (B2 — Pu1)].
We remark that the matrix equation (47) can be written as

(49) It = Apepnl's + [F0 pa) — £o]G,

where G means the column matrix G = (g;) with g; = 0 for

: 2a?
oo, 4+ m—1, while g,_,; =— and

e — 2,0+ 2,
t+ 114
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The solution of the system (49) subject to the condition I'(0) = 0 can be
evaluated by means of the lemma I, as the elements of the matrix 4,
satisfing to the condition (30). In this way one obtains the following valua-
tion :

(50) Tl < S 1EG 240) — Fb p,(0)] 1A,

where

Denoting as

10, 1]

from (49) follows

(51) max ||Ty|| < a2b—)Ll3Aa
‘B

[0, £1]

Denoting by
Yf‘l]([) F= /)n(t) —- j)f(ll)
For the estimation of the error y{(f) we write the equation (48) as

(32) 0 | = ¥ = 2 [F( p,) — F@ p) Py — La-1) + FE 2D — (L)1
But

|F(t, pn) Ty F(lf, ]5;:)| < L|pn _i)m:

consequently

& *

F( p.) — L pu) = wlps — Pu),
where
] < L,

Then, from (52) it results

1 - rF(t, p7)
1 -}y, P;) + WPy — Lo

R RS

) “]‘11“'
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Denoting as

ell 1 - vl p
(53) ¢ = max| - ——— Pi) ,
0,771+ vE(t pa) + rulpn — Pu—1)

we have
(54) max [v()] < ® max |51,
[0, 1,1 0, 1;
and also
(55) max |[y2(f)] € @ max [|I@)]-
te(ts—1,1s) te {ts—1, 1s)

Passing to the interval [¢, ,], we solve the system
(56) : Py = ApPy+H,
with the condition
(57) Pi(t) = Pi(t),
where we denote by Fi = F([t, pal(ti)]-
The vector I'y = Py — P; which represents the difference between

the solution of the system (56), (57) and the solution of the system (38),
(39) on the interval [#;, f,] is obtained from the equation

(58) Do) = ApDat) + G ()] —FIL #3015,

with the condition

(59) P2(tl) - P1(t1) . P’i‘(fl)-

According to lemma 1, one obtains for the error I'y(¢) the delimitation
(60) (T < [T+ 2—2 \FL{t, pa(0)1— L1 Pil))-

But
\F p(8)] — Flt, pilt)] < [F[ pa)] = F pults) I —

— |F[t, p,6)]—FLIL pala)

7} =5 Mathematica — Revue d'analyse numérique cl de théorie de I'approximation. Tome 5, N° 2. 1976,
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and corresponding to the above assumption one gets

\F[t 2.(0)] — FIt, p3(0)] < LBAS,

and

L palt)] — F[, pat)]] < Lip,(t) — pit)] = Liys-1,
and also
(61) \E[L pa&)] — F[4 pit)]] < LBAE + Lily9y).

For s = 1, taking (54) into account, one obtains
VELL pu()] — F[t pME)) < LOBAt + LO||T, ],
and from (60)

ITsll < 1Tyl + & (LBAC 4 LO||Ty Az,
According to the estimation (51) one obtains

(62) max [|T,|| < [oc L2<D( A_‘)2+ 202L (é‘” BAL.
) h?

(1, 85)

Continu'ing this. process, one solves in each interval o1 t]s=1,2, ..., N
the ordinary differential system of matrix form

(63) Py = Apr P} +H,
with the condition
(64) Pit) = Pi_i(t),
and the equation
(65) Py — pa = F(6, p3)(B% — pa_),
where
-1 =F(, pilt—1)].

In this way one obtains the vector P*(¢) which is equal on the interval
[ts—1, %] with the vector Pit), s=1,2 ..., N and the function Pa(d)

19 QUASL-ANALITIC SOLUTIONS 911

defined on the interval [{,_,, {] by the equation (65). Denoting by I'(f)=
= P(t) — P*{¢) and v,(t) = p,(t) — pi(¢) we have, according to the notation
introduced above,

T() = 0u0), i) =y, s=1,2 ..., N

for t [ts—l; ts]
The relationship between Iy(f) and y{'({) is given by the equation (55)

and the estimation of the I',  and I'y by the equations (51) and (62).

Continuing the estimation of the error I'(f) on the successive intervals
we get

66)  |IDy|| < (1—{—0‘)HFS~1||—|-O'§AL', 5= omgit || Iy

where

At
c = Qa2 —.
h?

From (51) and (66) one obtains

max ||T|< o gm[u + o) 14 (1 4af~2+ ... + (1 + o) + 1]

[ts—l’ tS

or

max ||| < 2 Af[(1+ ) — 1.

['S -1’ tS

But since s < N we also have

max [|[] é%At[(l 1oV — 17,

“S-—l’ [

Lo®*®T

—=w we obtain

and taking Af = 1—1\]- into account and using the notice ]
52

max |0yl < 2 At[(l s 2]” - 1]g5 (ev — 1)AL.
[t [ N [l

s—1"s

This last estimation shows that ['(¢) tends to zero as A¢ tends to zero.
It also, shows, that, one obtains better results when the interval [0, T]

is little.
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