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1. Imtroduction.

Several metrics can be defined for the set of continuous functions
between two metric spaces, the best-known (see [1]) being the uniform (or
‘Chebyshev) metric and the metric which generates the compact open topolo-
gy. Usually, the uniform metric is considered only for functions defined on a
compact, but there is not difficult to take it more generally.

In some problems appearing in topological dynamics, these two metrics
are unsatisfactory. For this, in what follows, we define a new metric for the
set of continunous functions, using as example Pompeiu-Hausdorff's metric.
Also we establish some relations among these metrics. Applications of this
new metric in solving some problems in topological dynamics will appear

elsewhere.

2, Basic notations and definitions.

Let d; and d, be two metrics for the set X. We say that d, is finer than
d,, and write d;, < d,, if the topology generated by d; is finer .than that
generated by d,. It is easy to check that d, < d, iff the identity application

i (X, dy) — (X, ds)

is continuous. This holds, for exemple, if there is a M > 0 such that for
every x and y in X:

do(, y) < Mdy(%, y)-
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Let (X, d) and (Y, ¢) be two metric spaces, and C(X, Y) the set of all
continuous functions from X to Y. To define some metrics for C(X, V)
we shall use the function L: [0, oo] — [0, 1] given by:

t

—_—, 0 <t<®
(1) Lpy=y1'+¢
1, I = o0
The uniform metric T for C(X, Y) may be defined by :
(2) T(f, g) = L(sup {e(f(x), g(x)):x = X})

or, as usual, with the identity instead of L, if X is a compact.
If X is a locally compact, separable metric space, then there are compact
subsets K, of X, with K, C K, for every #, such that X may be represen-
0

ted as: X = |J K,. In this case, the compact open topology on C(X, Y)

=1

is generated by the metric K defined as follows:

@ K(f, §) = 30 2" L(max{e(/(x), g2): & < K.)

s. MROWKA [2] proved that the converse is also true: if the compact
open topology. is metrisable, then X is locally compact.

We may also use the metric P of Pompeiu-Hausdorff (see [3]) which
is defined by the relation :

(4) P(F, E) = L(sup {sup inf e(x, ), sup inf e(x, ¥)})

xelF ye Ll yel xl

F and E being closed, non-void subsets of Y. Taking
(5) P(f, g) = P(f(X), &(X))

we obtain only a pseudo-metric for C(X, Y), because one loses the parametri-
zation on the set of values.

3. The metric S for C(X, Y).

With the above notations, we have the following:
THEOREM. If for f, ¢ € C(X, Y) we denote
(6) Solf,g) =inf {r>0:Vx € X, inf {¢(f(x), g(y)): d(x,y) <7} <7}
(with the convention : inf & = o), then
(7) S(f, 8) = L{sup{So(/. &), Sol&, /)})
defines a metric for C(X,Y).
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Proof. We have to verify only the triangle inequality:
(8) S(f, k) < S(f, &) + S(g %)
and this only for S(f, g) <1 and S(g, #) <1, ie.
sy = sup {So(f, &), Sol&, )} < ©

and
sy = sup {Solg, A), Solk, £)} < .

Let t > 0 be arbitrary and 7, #, such that:
5, < vy < Sy +t2; Sy < 7y < Sy + t2.
If x is a fixed point in X we have:
e(f(x), h()) < elf(x), gl2) + e(glz), A())
so that:
inf {e(f(x), h(y)):d(x, y) <71+ 72 < elflx), gl) +
+ inf {e(glz), h()) 1 d(x, 9) <71+ 7).
This means that for every z with d(x, z) <7, we have:
inf {e(f(%), b)) : d(x, y) < 71+ 72} < e(f(%), g()) +
+ inf {e(glz), M) :d(y, 2) <1a} < e(f(3), g() + 72
Taking in the right hand the infimum on {z:d(x, z) < 7} we have § ol fy 1) <
< 7, + 7, and interchanging f and A, we get: iy
max {Sy(f, ), So(%, <7+ 7y < max {So(f, &), Selg Hy +
+ max {S(g h). Solh &)} + £

Letting £ — 0 and taking in account the monotony of the function L, we
obtaine (8).

Remark 1. The geometrical interpretation of the metric S is the follo-
wing: if S(f, g) = » then, for every x in X the function g takes on the
y-vicinity of x at least ore value at distance smaller than » of f(x).

Remark 2. Among the metrics T, S and (if X is separable, locally com-
pact) K, there are the following relations : q

©) S(f, &< T(/, &) K(f, 9 < T(/ 8)
<

for every fand g in C(X, Y). Also we have P(/, g) < S(/, 8)-
We have in addition the following: ' -
Temma. If X is a locally compact, separable metric space, then the identity
Sfunction

i1 (C(X,Y), S) - (C(X, V), K)

is continuous.
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Proof. Let us suppose S(f,, /) =0 for # — o0 and let an arbitrary
0 <7 < L. Let X be represented as: X = | J K, with K, compact subsets

i X =1
of X, KX, C Int K, ... We fix a natural number 4, > log, 3/r, and denote
by s, the distance between K, and Fr K; ;1. Clearly s, # 0. Since f is

uniformly continuous on K, .1, we may find a s, 0 < s < min {r[3, s,},
such that « = K, and d(u, v) < s implies e(f(u), f(v)) < r{3. Also, there
is a N(s) such that # > N(s) implies S(f,, /) <s, i.c. for every « in X there
Is a v, in X with d(v,, ») <'s, for which e(f,(«), f(v,)) <s. So, for u in
K, we have:

e(fuln), f()) < elfu(w), fv.) + e(f(va), flu) <s+ 7/3 < 27/3

hence

-
~

[£o)

K(fw f) < 2 L(max {e(f,(u), f(u)) 1 u € K, })+

i=1

that is K(f,, f) =0 for n — oo.

( 1134
Consequence. If X is a locally compact, sepavable metric space
we have :

(10) ' K<S<T.

Remark 3. Generally the above metrics are not equivalent, that is in
(10) converse relations fail to hold, as show the following exemples.
Exemple 7. Tet f, f,: R — [—1, 1] be defined by:

J(x) = sin-exp (x)

_ 1/20 < 27/3 + #/3 = »
'L::i’-{ 1 .

and

ful®) = flx +¢,), with t, = n#+3,
dn + 1

For # — oo we have ¢, — 0 and S(f,, /) — 0, but
T(F, 5l 1 (41 - 1)1:) » C(dn + Dx = E 1
(F 115 (| (10 E22%) — pfia Do) 2

That is 7" and S are not equivalent even if Y is compact.
Exemple 2. Let

f(x) = exp (x)
and

%) =f(x + 1)
with £, — 0. We have:

K(f,f) =0 for n -
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<31

but
T(f, f) =1 for every n.
Exemple 3. Let
f(x) = 0 for every » in R
and
fulx) =1, exp (%)
with 0 < ¢, — 0. We have:
K(f,, f) =0 for n — o0
but
S{f., J) =1 for every n.

Rermark 4. If on C(X, Y) one takes the topology generated by one o
the metrics K, S and 7, then the application: -

F:C(X, V)X X =7,

defined by F(f, x) = f(x), is continuous.

In the case of the metric K, this is proved in [1] and for the metric
T it is trivial. Let us suppose S(f,, /) — 0 and %, — « for # — co. Because
[ is continuous in x, for every » > 0, there is a s > 0 such that d(x, y) <s

implies e(f(x), f(y)) < % By assumption, there is a natural N with the

property that for » > N, d(x, x,) < gand S(fp Jf) << min {%, é} .

4

For such a #, there is an y, in X with d(x,, y,) < % and e(/f,(x,), f(7,) < FL
That is d(x, ,) << s and so
e(fu(%,), [(%)) < e(fulx), fly,) + elf(y,), (%)) <7

hence

Ful) = f(%).
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