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1. Introduetion

In this paper we study a simple, yet intuitively appealing, interpo-
lation problem. An interesting feature of the problem is that some of the
interior nodes at which the interpolation takes place are variabile. The
interpolation problem has an important application to the electrical
engineering problem of designing digital filters.

We will assume that the basis functions /g, ..., %, for the generali-
zed polynomials of interpolation satisfy the following hypotheses :

(H1) ko, ..., k, are continuously differentiable on (%o, x,].

(H2) Any linear combination ) ¢;/(x) of the derivatives which is
=0

not identically zero has at most # — 1 zeros in (%5, %,).

Using Rolle’s Theorem it is easy to see that hoy «.., h, form a
Chebyshev system on [z, %,], i.e. every nontrivial linear combination
n

2 a;h;(x) has at most #u zeros in [x, x,]. Conditions (H1), (H2) are

=

similar to but not the same as requiring A, ..., h, to be an extended
Chebyshev system of order two [6]. We can now state the interpolation
problem.
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Generalized Interpolation Problem. Let ¥,, ..., y, be given real num-
bers satisfying (—1)i(y; — ,.0) <Ofori =1, ..., n. Let I = {5y, ...,5,}
be given integers satisfying 0 =4, <4, < ... <17, = #. Let .

x0:€50<af1"' <££k:xn

be given nodes (fixed nodes). Assume 7%, ..., &, satisfy (H1), (H2).

Does there exist a generalized polynomial p(x) = Eaihi(x) and nodes
1=0
X << %3 < ... < x, such that

1) % = Ei]., =0, ..., k

2) px) =y, =0, ..., »n

3) p'(x;) =0, v & I.

Condition (3) is equivalent to requiring that p(x) attain a relative
extreme value at the variable nodes. The interpolation problem was first
introduced and solved by c. pavis [2] for the case I = {0, #}, %;(x) =
= x'~1; i.e. all interior nodes variable and using ordinary polynomials:
In [5] w. KAMMERER gave an iterative method which converges to a
solution of the interpolation problem for the special case introduced by
Davis. In Section 2 we give an algorithm similar to Kammerer’s for the
construction of a solution to the Generalized Interpolation Problem. Our
analysis is different than Kammeretr’s, which utilized divided differences.
In  [3] FrrzeERALD and scHUMAKER used a differential equations
approach to prove existence and uniqueness of the solution to the Gene-
ralized Interpolation Problem under slightly different assumptions on the
basis functions %,, ..., A,.

2. Deseription and analysis of the algorithm

Algorithm. Make an
nodes with x{ = ‘ii],, j =0,

initial guess #{ < x” < ... < %9 for the
i co., ko Let j)(O) be the unique generalized

polynomial satisfying (%" =y, 1=0, 0. 'n Tetlz < ... <z, ,4
be the # — 1 zeros of [p™] in (x,, #,). If ¢ = I set ) = (fixed
nodes). If 7 & I set a4 =z, Then calculate p" satisfying pP(#M) =
=y, 1=0, ..., » and continue.

We will now prove a series of lemmas to show that the Algorithm
converges to a solution of the Generalized Interpolation Problem. It is
convenient to have a name for a generalized polynomial which interpolates
at the fixed nodes and successively attains the prescribed y-levels; such
a pol ynomial will be called a feasible polynomial.

Definition. A feasible polynomial P s any linear combination

P = E ah; such that theve exists xy, ..., %, 4 With xy <2, < ... < %, 1<
1=0

< %, and
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1) x¢]:£.],]:O, ...,k
2) p(x1) =y,1=0, ..., n

The first lemma states some basic facts to be used (often implicitly) ;
the proof is straightforward and will be omitted.

Lemma 1. Thederivative p' of any feasible polynomial P has exactly
w—1zeros 2 < ... <z, in (% %,). The polynomial P is monotonic
in cach subimterval [xo, 2], [z, z), [z,_1, %,]. Also P achicves its rela-
tive extreme values in (x,, x,) precisely at z,, ..., z,_, and these are alter-
nately velalive maxima and relative minima.

A crucial property of the iterative method which will be exploited
heavily in the analysis is that each iterate starts out below its predecessor ;
the next lemma expresses this precisely.

Definition. For any feasible polynomial P we define z(p) =
=inf{x = [xy, x,]: p(x) > y;}. That is 2(p) is the first point wheve p
reaches the y,-level.

p e@m a 2. Let p be a feasible polynomial. Let p; be the polynomial
obtained by iterating once on P using the Algorithm. Then

1) p:(x) < p(x) for all x in (%o, 2(p)) unless p;(x) = p(x)
2) 2(p1) = 2(p).

Proof. To prove (1) assume there exists x* in (x,, z(p)) such that p,(x*) >
> p(x*). Tet %y < 53 < ... <s, ,<#%, be the abscissas obtained from P
at which the interpolation to get $, takes place (these are either fixed
nodes or zeros of p’). Then p — 4, is alternately nonnegative and nonposi-
tive at the # + 2 points x,, **, s, ..., Sy—1. %, Hence p — p, has at
least n + 1 zeros in [x,, %,], counting interior zeros where p — p, does
not change sign as two [7, p. 63]. Hence 21(x) = p(x). The fact that
Z(p;) = z(p) follows immediately from (1).

Lemma 3. Let {p} be a (sequence of polynomsials generated by the
Algorithm. Then {pk} s uniformly bounded on [x,, x,]

Proof. By Temma 2 for all %, z(py) = 2(p,) and p,(x) < po(x) for all

xin [x,, 2(p,)]. Hence each p, is monotonically increasing in [#,, z(p,)] and
Yo < p(#) < yyforall xin [x,, 2(pg)]. Lett,, ..., t, ben -4 1 fixed points

in (5, 2(po)]. Then p,(x) = > p,(t,) Lo ---;(,-t_l. % ‘T‘; ot ahere
i=0 orgd.u 8,
Rolto) .. hy(to) '
Dity, ..., t,) = det : . Since 2, ..., #, arein [%,, 2(p,)],
kO(tn) ' hﬂ(t”)

2o S Pit;) < 91 Using the continuity of B,

] ! .., h, it is easily seen
that {$,}"is uniformly bounded on [%0, %,]
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In the subsequent analysis let lpll denote the uniform norm on
[xO) xn]l ”P” :inl?fip(x)l

Lemma 4. Let p be a feasible polynomial. Given e > O there exists
3 >0 such that if q is any Jeasible polynomial with |jp — qll < 8 then
2 — @ill < & where p, is the polynomeial obtained by iterating once om P
and q; 1s obtained by ilerating once on q using the Algovithm.

. Proof. Let € > 0 be given and let o <8y < ... <5, ; < x, be the
abscissas obtained from p at which the interpolation to get p, takes
place. The proof of Lemma 4 follows immediately from the following
two statements :

(i) For € > 0 given, there exists 8, > 0 such that if Uy < ... < u,
satisfy max s, — u;| < §, then lpr — gl < e where g, is the polynomial

1<ign—-1 |
interpolatlng to (xO’ yO)r (%1: yl)l ] (%n—lJ yn~1)J (xn’ yu)*
(ii) For 8, > 0 given, there exists 8§ > O such that if g is a feasible
polynomial satisfying |jp — gll < 8 then max |s; — u;,| < §; where %o <X
1<ig<n—1

< % < ... <, ,<<x, are the abscissas of ¢ at which the interpolation
to get ¢, takes place.

To prove (i) let

i
D(xg) 4y, ooy g, %, Ujgq, ..., Uy 1, Ky)
=0 D%y, thy, « o, ty—y, 7,)

where D is as defined in the proof of Lemma 3. Then 7, is a continuous
function of x, u,, ..., u,_, on the compact set [x,, x,]X [s3—n, s;+ 7] X

X oo X [$4-0 — M Su-1 + ] where v;:l min (s;,, — s,) and (i)

1<i<n—-2
follows. The proof of statement (ii) is straightforward and will be omitted.
The lemma then follows from (i) and (ii).
The next Theorem is the main result of the paper; it guarantees
the existence of a solution to the Generalized Interpolation Problem.

THEOREM 1. Assume ho, ....h, satisfy hypotheses (H1), (H2). The
sequence {p,} genevated by the Algorithm converges uniformly to a solution
of the Gemeralized Intevpolation Problem.

Proof. Since {p,} is uniformly bounded, it has a uniformly convergent
subsequence {‘pﬁ}.} with limit, say p,. Clearly, p, is a feasible polynomial.

We first show p, is a solution of the Generalized Interpolation
Problem. Assume it is not and let (p,); be the polynomial obtained by
doing one iteration of the Algorithm on P Let z(p,) be the point where
Py first reaches the y;-level and let z(pkj_) be similarly defined for Pa-
Since p, was assumed not to be a solution we have (py); 2 py. Let
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%, < (%9, 2(py)). Then by Lemma 2, ¢= Pal%) — (py)i(%,) > 0. By Lemma
4 there exists a § > 0 such that if g 1is a feasible polynomial with
Il — gl <3, then |I(py); — g;ll < ¢/3. Let J be such that 2 — 24l <
<min {e/3, 8} for all j > J and also such that 4(py) > %, Hence by
Lemma 2 the iterates of by, lie below Py for x in (%, z(-;;kj)) and in
particular for x = x,. Thus

Py, (5 < B (5D < (pu)i(x) + o3

J+1

2 )
= pu(x,) — EE , a contradiction.

Hence, p, is a solution of the Generalized Interpolation Problem.

Now assume there exists another uniformly convergent subsequence
{Pm,-} with limit, say, p,, different from Dy Since p, 3= Py, there is

some point x, in (x,, min {(z(p,), #(P4x)}) where one of these is above
the other, say p, (%)) — pux(2y) = ¢ > 0. There exists a J such that
if j > J, then

(1) ) “ij — Pl < ¢/3

2) | 1Bm; — Pasll < €/3
and also z(;b,,,/) > %,. Then

lbmj(x*) < P (%) 1 ¢/3
© = Pu(y) — 2¢/8.

Since all iterates of P, lie below P:»J for x in (%,, %] we have a contra-

diction to (1), Hence Ps = Pys. Thus all uniformly convergent subsequences
of {#,} have the same limit and so {$s} is uniformly convergent. This
completes the proof of the theorem.

3. Concluding Remarks

We have tested the algorithm on the computer. In the examples we
1an, convergence to the solution was very rapid.

The algorithm has been used by electrical engineers to design so-called
extra-ripple digital filters [4]. This application is a special case of the
General Interpolation Problem with I — {0, n}, hy(x) = cos 2rkx, (x,, %,) =

= (0, :5). Their numerical experience with the algortihm has been very
satlsfactory.
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