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1. In the present paper are studied the method of chords and its
modifications. The conditions of the convergence of successive approxi-
mations given by these methods are improved, and the results are applied
to solving the ordinary differential equations and algebraic systems.

We use the following notations:

' YPX,y(L) for the generalized norm of operator defined on X with values
in Y;

Pxs,y(B) for the generalized norm of a bilinear operator defined on
XxX with values in the space of the linear operators L(X, Y);

Py(P(x,)) for the generalized norm of an element y, = P(x,) € Y;

2, Let be the operator equation
(1) P(x) =6

Where P(x) is a nonlinear continuous mapping of the complete supermetric
Space X in the complete supermetric space Y [1].

Supposing that the divided differences [2] of the second order of
the mapping P exist, we study [4] the following iterative formula (method
of chords) [3]

(2) %, ., = %, — A, P(x),

Where A, — [Pzl ', 2 =0, 1, .... The following theorem of existence
of the solutions of equation (1) holds:
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THEOREM 1. If for inmitial approximations x,, ¥_y € X the following
conditions are satisfied

1% There exists Ay = [P,, w ] 7Y with Py x(Ag) < B,,

2% oy Plw) < i =0, =1 and mo< 24,

3 Pxoy(Puuw,) <k for every u, v, w € S(x, ), r = ; By,
1

4° by = Biknoy < -

then the equation (1) has a solution x* < S, which is the limit of the sequence
(2), the rapidity of the convergence being given by the inequality

Oy (%, — x%) < 21=sngon—1(4fp )ong,.

where 0 < q <1, and s, is the gemeral term of the sequence of the partial
sums of a Fibonacci sequence u,, with w, = wu, = 1.

For avoiding the necessity to compute the mapping [P, ]~ in every
step of the iteration, the algorithm (2) can be replaced by the modified
method [4]

(3) Xat1 = % — AOP(xn)J

where we must calculate only the mapping [P, , ] for initial approxi-
mations x,, % ;.

For proving some theorems on the existence of solutions of a given
operator equation, by using the algorithm (3), we prove the following

Lemma. If we have
(4) ex(® — 2%) < pp(m, — %)
ex(% — %o) < By,

wheve x, %y, x, € X with x* a solution of the equation (1), and if the ope-
rator P satisfies the conditions 7° — 4° of the Theorem 1, then

(5) ex(4(x) — x*) < Fox (2% — x%)
ex(d(x) — %) < 2By,

wheve

(6) A(x) = x — AgP(x).

Proof. We observe that the mapping of the supermetric space X
defined by (6) satisfies the following properties :
a). If x* is a solution of the equation (1) then x* -= A(x*).

b) xn 1T A(xn)
c). Ayer =TI — AP,y I being the identity Agpw, =8
d). Ay = =AoPyynpu, o, 2, 3" < X.
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Hence it follows by the property a)

(7) A(%) — x* = A(x) — A(x*) = Agpm(x — x%),
Since
Axev — Ax,x. = Ax,x‘ ,,,(x* == xo),
we have
pX,X(Ax,x* | Ax,x.) < Bﬁk'f)—l =, ho
i.e.
(8) Pxx(Auwe) — Prx(dss,) < by,
From the property ¢) we can write
Ax,x, i Ax,x‘, o Ax,,,x_l = Ax,x.,x._,(x - xl)
and thus
(9) pX,X(flx,x.) < BokpX(x o x__l).
We have

ex(% — x_1) < py(x — %) + px(%o — x_y) <
< Bono + Bo(n_y + No) = (21, + M_4)By;

consequently the relation (8) becomes
Cxx(Asm) < hy + Bok(2n, + M) <
< ko + % Bikn_, < 3h,

and from (7) we obtain
pxld(x) — x%) < Shopx(xy — x*) S Gox (% — x%)

and the first relation of (4) is proved.
For proving the second relation we consider the inequality

ex(A(%) — %) < o (A(%) — 2) +py(r, — #,)
what by hypothesis leads to
ex(A(x) — x,) < 2By,

and the lemma is proved.

Now we can prove

THEOREM 2. If for the imitial approximations %, %x_y €X, the
operator P satisfies the conditions 1°—4° of the Theovem 1, then the Sequence
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{#,}, qiven by (3), converges to a solution x* of the equation (1), the rapidity
of the comvergence being given by. i

(10)

where g = 3hy < 1.
Proof. By Theorem 1 it results that the solution x* of the equation
(1) exists. We show that x* is the limit of the sequence {¥,} given by (3).
For x = x, the conditions (4) of the Lemma are satisfied, and by using
the property b) of the mapping (6) we have

ex(%2 — #%) < gpx(2, — x%)

px(¥* — ) < ¢"7Yp (% — x¥)

and
Px(%2 — %) < 2B¢n,.
By induction we obtain
ex(®, — 2%) < " Loy(wy — 2%)

and since ¢ < 1, it follows that lim =

n—>0o

3. Let be the nonlinear system of algebraic equations

{f1(x1, %) =0
Se(21, x3) =0
which can be given in the form

(12) P(z) = 6

where the mapping 4 = P(s) is defined in the supermetric space X, with

values in supermetric space Y, where
%1 Salx, xz))

© = = X = (=S Y.
(xz) ! (fz(xl; %s)

We can write a divided difference of the mapping P in the point
Xy, %¥_, in the form

A A AN AY) A ) — AL ) )
20 _ (-1
1 1

(13)

xg’) _ x(;l)
(14) Py, ey =
° S, 47)— A0, )

A, ) = A0 A7)
O 0= ‘

Considering the following generalized norms for spaces X, Y .

- Gy|x(8)| }
1+ calz(3)]

x(lo) — x{l"”

(15) ex(x(t) = max{

1
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(15) pr(2(t) = max{ﬁ'i%}

¢ 1+ ¢, 2(8))

with ¢, = ¢, =0, ¢; = 1, the matrix (14) being nondegenerate, we have
Py(P (%)) < 7, pr(P(r4)) < n_,

and

(16) P x([Pry 2117 = Px x(A,) < B,.

Supposing that the divvided differences of the second order of Ji(%1,2),
¢t =1, 2 are bounded with k, we can find the constant % such that

(17) PX,X(Px’,x” - Px",‘x”’) < pr(x' - x”l),

Then K = 2—k, and choosing ¢ > 0 so that
c2

ho = BiK7_, < %
we can apply the Theorem 1 or 2 to solve the system.

4. Consider the differential equation of the first order

2'(t) — fIt, ()] =0,

defined in the domain given by the inequalities ty <t < T and lﬁc(t) —
— %o(f)] < 3, with the initial condition i

(19)

(18)

x(to) T Eo

Sl x(#)1, %) and %o(f) being continuous functions.
The equation (18), with initial value problem

(19), can be written
a8 an operator equation

P(x) = x(t) — £, — S fIE x()1dZ = 0.

For solving this equation we wuse the method of chords, in a new

form determined by the equation (20). '

Computing a diveded difference of P, we obtain

(20)

¢
Paenll) = n) = { fo un (0,
4o
where

fo = I m0)] — £, 50)]
i #() — xy(t)
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In order to find the inverse of P,, ,, we determine the function x(¢)
in the equation
i

#(t) — | funsl®)3F = 59
ty
i.e. in the equation
X'(E) = fo, u2() = y'().
We obtain

§fx”xzd7 t 1 § T )
[Po et y(t) = i pw+gyww ﬂ.

By partial integration we get the method of chords
%yi1(t) = %,(8) — Px,(0)] —

t 4
(21) B ets.f””' xn_ldt ' e—tsu fxn,xn_ld’

fxn,xn_lp(xn(t))dt .

As generalized norms we consider (15) and (157).
For our problem we can put ¢; =1, ¢, = ¢, =0, ¢, being choosen
in optimal manner.

By the method of chords, the formula (21), and the generalized
Newton formula, we can obtain K satisfying the hypothesis of Theorem 1.

We have
P(xn) = P(xn) ”‘ P(xn~1) - Pxn—u xn-n(xn . xn—l) =

¢

=—§{ﬂa%@]—ﬂa%4@1eﬂhﬁwwma—xhﬁ§ﬂ

te

and with | fy o | < & it results

Lo b (3 () — Zua(8)) - 0 (alt) — %_o(8))

pYP(xn) <

c?

. T ¢
ie, K =— ",
,;ﬂ

By (21) we obtain
Py, x(Ag) < [1 + M(T — ty)e?MT-t] = B,,
where M = |f, |

-1
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