MATHEMATICA — REVUE D’ANALYSE NUMERIQUE
ET DE THEORIE DE I’APPROXIMATION

L’ANALYSE NUMERIQUE ET LA THEORIE DE L’APPROXIMATION
Tome 6, N° 1, 1977, pp. 3136

ON THE RADIUS OF A GRAPH
by
FLORICA KRAMER
(Cluj-Napoca)

A graph is called an 1-graph, if any pair of his vertices is connected
by at most one edge.

In the following we shall study only finite undirected connected 1-
graphs without loops.

Let G = (V, E) be such a graph, where V is the vertex set and
E is the edge set. The order of the graph G is the cardinal of the vertex
set V.

The number of edges having a given endpoint x & V' we shall desig-
nate by g(¥) and this number is called the degree at the vertex x. We shall
designate by D(G) and by R(G) the diameter and respectively the radius
of the graph G. If we shall denote by d(x, y) the distance between the
vertices x and y of V, i.e. the length of the shortest path from x to
Y, then the diameter and the radius can be defined by

(1) D(G) = max max d(x, )

yeV  x€V

R(G) = min max d(x, y)

xeV  yeV

1 Frpm the definitions of this two numerical characteristics follows
immediately the relation

(2) R(G) £ D(G) £ 2R(G).

There are known some inferior bounds for the radius of a graph,
Sven then when he is a directed ome. If the graph is directed we shall
denote by g+(x) the out-degree of the vertex x, i.e. the number of out-
80Ing edges at the vertex . V
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THEOREM 1. Let G = (V, E) be an l-graph without loops, of ovder
n with
max gt(x) = p > 1.

rxelV

His radius R(G) verifies thew the inequalily

(3) R(G) 2 s —n )
log p
Another inferior bound for the radius of a graph depending on the num-
ber of vertices and edges was given in 1965 by M. k. coLpBERG [2].
We call a directed graph stromgly commected it for any pair of verti-
ces v and y there is a path from x to y and inversely.

THEOREM 2. The radius of a strongly connected graph with n verti-
ces and m edges verifies the inequality

(4) R(G) 2 [;]
m—n |1

where [v|* designates the least imteger = r. For cach parr m and n, there
is a strongly comnected l-graph G with w vertices and m edges such that
we have the equality sign in (4).

In the sequel we shall try to obtain some upper bounds for the ra-
dius of an undirected graph.

We denote for £ =1, 2, ... by g,(x) the generalized degree of order
k at the vertex x & V. This notion was introduced in [3] in the follo-
wing way :

ge(x) =card {y, y € V, 1 < d(x, y)

IIA

k},

i.e. the number of vertices y with the distance from x satisfying the ine-
quality 1 < d(x, y) £ k.

THEOREM 3. Let G = (V, E) be a finite connected undirected 1-graph
of order n without loops such that the gemeralized degree of an order k veri-
fies for every veriex x the inequality

gl 2|7 ]

wheve h is an integer h = 2. We have then :
2k Jor h =2
(5) R(G) ={3k + 1 for h =3
Q4+ 1)h—2) —1 for h =z 4

The established bounds are the best in the sense, that theve ave graphs
vertfying the hypotheses of the theovem and Jor which we have the equality
sign in (5).
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w

Proof. 1. First we shall settle the case # = 4. Let us suppose R(G) >
> (2k ++ 1)(h — 2) — 1. This means, that for every vertex a € V there
is a vertex b =V such that d(a, b) = (2k 4 1)(h — 2). We consider a
shortest path between a4 and b

P ==V, (%0, 1), %1, ..
Xerrne-2 = b} (fig. 1)

» Xk (h—2)—1, (x(2k+1)(h«2)A1, %(2k+1)(h—2)),

e — @ SR

Y02 Kasz o

Fig. 1

We denote by C,, =1, 2, ..., h — 1 the following sets of vertices i
C,={x zsV, A H@nrni-1, %) < k}

These sets are pairwise disjoint, otherwise P wouldn’t be a shortest
path between a and 5.

Since our supposition R(G) > (2k + 1)(h — 2) — 1 implies for every
vertex the existence of another vertex at the distance 2r + 1)k —2)
from the first, there is also a vertex ¢ corresponding to the vertex
%y 11 such that d(xy,,, ¢) = (2 + 1)(h — 2). We shall prove that the set

C={x, x<V,dx c <k}
is disjoint from each set C,, 1 =1, 2, .. ., # — 1. If there would be some
i, 1 =4 £k — 1, such that C N C; # J, we can conclude
A(%yy 15 €) = A%y 1, Barsni-n) + AFerpne-n, ©) <
SREANE—8) + 2k =2k 1) —2) — 1.

This yields a contradiction to the above results. Thus we have de-
termined /% disjoint subsets of ¥, each of them containing at least
([%] + 1) vertices. By a comparison of the cardinals of ¥ and of the

]
subsets C, Cy, C,, ..., C,_; we get
h—1
n=|V|2|Cl+Y IC] 2 h([§]+ 1) >n
i=1
which is evidently impossible.

2. Consider now the case » = 3. We proceed analogous to the preced-

ing case supposing R(G) > 3k + 1. For each vertex «¢ = V results then
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the existence of a vertex b such that d(a, b) = 3k + 2. Let P — {a = x,,
(%o %1); %1, »+ 00 Haprrs (Kap o1, Fapge)s Xapen =b} be a shortest path between
a and b. The subsets of I necessary to reason as above are:

Co={x 2V, d(x,y x) <k}
Cr={% %V, d(xy,,, x) <k}
Co=1{x,x=V, d(c, x) Sk}

where ¢ is a vertex of V with d(x, ,, ¢c) = 3k + 2.

3. We consider the last case, 4 == 2, According to Theorem 3 of the
paper [3] we have in the above assumptions the inequality D(G) £
£ (2k 4--1)(h — 1) — 1 = 2. This and the relation (2) give us R(G) £ 2k.

Next we shall give some examples for which in (5) holds the equality
sign.

Example 1. For h = 2, let G be the graph formed by a circuit with
n =4k + 1 vertices. We have n==4k + 1, g,(x) =2k and [g] =2k.
Hence there are verified the hypotheses of Theorem 3. The radius of
this graph is R(G) = 2k.

Example 2. For h = 3, let G be the graph formed by the circuit with

n = 6k + 2 vertices. We have then g,(x) = 2k for each vertex %, n —
hx

= 6k + 2, [EJ — 2k and R(G) = 3k + 1.
Example 3. For h = 4 let G be a circuit with #» = 8& 4- 2 vertices.
1;.] —%2k and R(G) = 4k -+ 1.
1
We get from Theorem 3 for £ = 1 the following:

Corollary If G=(V, E) is a finite connected undirected 1-graph
of order n without loops and if the degree of every vertex satisfies the tnequality

We have then g,(x)==2k for each vertex x,

> |7
gt = |7]
where h ts an integer, h = 2, then we have
2 for b =2
(6) R(G) =74 for h =3

3h — 7 for b z 4.

THEOREM 4. Let G = (V, E) be a finite conmected undivected 1-graph
of order n without loops. If the degree of every vertex x < V satisfies the
inequality

gt 2[7] 2 2
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then for h z 4 we have the inequality

(7)

4

Proof. The first part of the conclusion has been established in the
Corollary. It remains to show that for 4 > 4, we have

(8) R(G) £ L \/4’: [F- mre

Let f(#, R) be the maximum number of edges a graph with # vertices and
radius R can have. v. T. viziNg deduced in 1967 in the paper [4] the
following values for f(n, R):

fln, 1) = ”‘”_2‘” fn,2) = [”‘” = 2)] and

©)

fr, Ry = L= R4St AR - GR o p

z 3.
2

As g(x) = % for every vertex x¥ € ¥, we have for the number m

(3
of edges of the graph G the inequality

(10) m 1[2]
2 1%
From (9) and (10) follows :
(11) L nln <n2—4nR+5n+4Rz—6R
2 [h] P 2

which will us yield the bound for R(G). The last inequality can be put
under the form
(12) 4R2—2(2n+3)R—f—n2+n——n[%]>O.

Thus we get an elementary algebraic problem relative to the sign of a
quadratic trinomial. The discriminant of the trinomial is

A:4n[_:.]—8n+9

and the equation in R has the roots

>

2n+3—\/4n —8n +9 2n+3+\/4n
Ry = and R, =

4 4

21 o
hJ_n+
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The set of the values R which satisfy the inequality (11) and respectively
(12) is formed by the intervals [3, R,] {J [R,, -+ o), but as [ﬁ] = 2,

h

it follows that

2n+3+\/4%[;:—|—8n+9
R2= 22%—!—34—3:%-!—3

n
4 - 4 2 T2
As the radius of a connected graph cannot be greater than%, the set
of those R interesting us is the interval [3, R,] and hence R < R,. Thus

we have established the inequality (8). It is easy to verify R, = 3.

Indeed, as # = 4, we have

IIA

2 <2 and hencel™ <p oy
h 4 4

Then

\/4n[ﬂ—8n+9

<J¢Z§—8ﬂ -}—I—:n~4,

IIA

\/4%[3] — 8+ 9 éJﬁé_—%+—9<

wherefrom

2n+3—\/4n[§]—8n+9
2 3 — (n —
Rlz >'n+ (n 4):%—|—7>14_5>3.

4 4 4
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