MATHEMATICA — REVUE D’ANALYSE NUMERIQUE
ET DE THEORIE DE I’APPROXIMATION

L’ANALYSE NUMERIQUE ET LA THEORIE DE L’APPROXIMATION
Teme 6, N° 1, 1977, pp. 37—42

A HELLY—TYPE THEOREM FOR ARCWISE CONNECTED
SETS IN THE PLANE
by
HORST KRAMER
(Cluj-Napoca)

Denote by R™ the real m-dimensional Euclidean space and by d(x, y)
the metric in this space. We shall use in the sequel the following two
distance functions :

S(MI; MII) == min {d(p/’ PII) :pl = MI, pll = MII}
and
p(MI, MII) — maX {d(PIJ P/l) :p/ = MI, pli = MII},

where M’ and M" are compact subsets in R™.

Definition 1. 4 set M in R* is called nonseparable by hyper-
Planes, if there is no hyperplane H such that H "\ M — & and M contains
poinis in both the open half-spaces determined by H.

The sets, which are nonseparable by hyperplanes have been called

by 1‘57)4)IIANNER and H. RADSTROM [1] convexly connected (see also [5]
B. ;

Definition 2. The Sfamily 8N of sets 1w R™ will be called inde-
Pendent, of for amy k pairwise distinct ‘members M,, M, ..., M, of S ;

i = 1+ 1, any set of points %y, %y, ..., %, where x,= M, i=1,2, ...k,
353?’??%%33 a simplex of dimension k — 1, or equivalently lhe vectors x, — x,,
R X, — %y are linearly independent. ’

. X KRAMER and A. B. NEMETH have proved in [4] the following theorem,
Which is needed in the sequel.
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THEOREM 1. Let My, M, ..., M, , be compact sets in R* with the
property that their comvex hulls conv (M,), conv (M), ..., conv (M,.,)
are wndependent. Then there exists at least ome pownt q = R* with the pro-
perty that
() 8lg, M) = ... =8(g, M) = olg, My.)) = ... = (g, M, )
where R 4s an integer 0 < k < n + 1 (the case k =0 or k = n + 1 means
that i (1) appears only o and respectively, ouly 3). In plus if each set M,,
i =1,2, ..., %4 1 is nonseparable by hyperplanes, then the point q, with
the property (1) is uniquely determined.

The following Helly-type theorem was proved in ([2], Theorem 2)
by n. KRAMER and A. B, NEMEIH.

THEOREM 2. Let 3 = {K;: i = A} be an wndependent family of com-
pact convex sets in the Euclidean plane R with at least ftve members and
let » be a given positive number. If for any three distinct indices 1, j, I of
A, there is a point qy such that we have
(2) g K) = (g, K;) = 8(qu, K)) = 7,
then theve exisls a point ¢ = R® such thal

(3) 3(g, K,) = » for each i = A.

The aim of this note is to establish a Helly-type theorem analogous
to Theorem 2 for the distance function p in a somewhat weaker hypothesis.

THHOREM 3. Lot & = (K :i = A} be an independent family of compact
arcwise connected sets in the Euclidean plane R® with at least Jfive members

and let r be a given positive number. If for any lhree distinct indices i, g,
of A there is a point qy such that we have

(4) elqan, 1) = plag, K;) = olqy, K)) = 7,
then there cxists a point ¢ = R® such that
(5) elg, K;) =7 for cach i = A.
For the prool of the theorem we need two lemmas.
Lemma 1. Let K' and K" be two disjoint nonemply compact arcwise
sonnected sest of the Euclidean plane R2 and let v be a given positive number.

There are then at most two points g, and q, such that we have

(6) P(’?n ‘K!) = P(‘?.‘- I{”) =4r fi’)?’ i == ]., 2.
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Proof. Suppose the contrary, i.e. there exist three distinct points
g1, 45 and gz such that we have

() (g K') = p(gs, K') =7 for 1 =1, 2, 3.

Denote by C; = C(g;, 7) = {x: x = R?, d(x,¢;) =7} the circle of centre

; and ra‘d};us r and by D, the corresponding disc with boundary C,. Fron3
the definition of the distance function p and from the hypothesis that K
and K"’ are compact sets, follows

8) KNC,#8and K"NC, #0,1=1,2,3.
and
) K'UK'CD, i=1,2,38.

From the last inclusion we get immediately
(10) K'UK"C D, DyN D,

Since the sets K’ and K'' are disjoint, the intersection D; N D, N D,
must. contain at least one straight line segment and the boundary of
D; N Dy () Ds has to contain an arc of each circle C; i=1,23. The
only possible relative position of the three circles is that indicated in

the Figure 1.

Figure 1.

It is easy to see that it is impossible to inscribe in the intersec’hop
D, N D, N D, two disjoint compact arcwise connected sets K,; and K,,
which have to satisfy the conditions (8) and (9). This contradiction com-
‘Pletes the proof of Lemma 1.
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Figure 2

Remark. The hypothesis that the sets K, are arcwise connected cannot
be replaced by a weaker one requiring only that each set K, should be
nonseparable by hyperplanes. This can be seen from Figure 2 in which
K, =K, UKy and K, = Ky U Kay.

Lemma 2. Let & ={K,:i <A} be an independont family of
compact arcwise comnected sets in R*. Then

éT{‘conv = {COHV K,; = A}

is an independent family of compact sets.

Proof. As any arcwise connected set is nonseparable by hyperplanes
in R”, this lemma follows immediately from Theorem 1 in [3] which
asserts us the following: Let & = {F,;:4 = A} be an independent family
of compact sets in R", which are nonseparable by hyperplanes. Then &y =
= {conv F;:i € A} is an independent Sfamily of compact sets.

Proof of Theorem 3. By Lemma 1 and by the unicity part of Theo-

rem 1 (with 2 = 0) it is sufficient to prove that for any four members °

K;, K;, K, and K,, of the family 9 there exists a point p such that we
have ‘

o Ki) = o(b, K;) = o(p, K) = o(p, K,).
Consider therefore five arbitrary members of the family &, which we

shall denote by K, K,, ..., K. Corresponding to the sets K, and K,
there exists by Iemma 1 at most two points ¢; and ¢, with the properties

(11) ' o(gr, Ky) == p(qy, Ky) =7
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and
(12) (g2 Ki) = p(qa, Kp) = 7.

For a given 4, 3 <4 £ 5, the corresponding point ¢,; has to coincide
either with ¢; or with g,. It results that at least two of the points G128
J12a a0d ¢y5; have to coincide with one and the same point of ¢, and
g>. Without loss of generality we can suppose that gyp = gyp4 = ¢;. If
135 coincides also with ¢,, for the five sets K, K,, ..., K, results the
existence of a point, namely ¢,, such that
(13) plqs, K;) =7 1=1,2,...,5.

Consider now the case ¢y55 = ¢,. Because of the T.emma 1 there exist
at most two points g; and ¢, such that

(14) P(QL Kl) = 9(91: Kﬁ) =7
and
(15) plgs, K1) = o(qz, Ks) = 7.

if fesults as above that for one of this points, let him be g;, there are
two indices ¢ and 7, 2 £ 4 <<j < 4 such that we have

(16) pla1, K1) = olq1, Ki) = (g1, Kj) = olgi, Ks).

It results that for the independent compact arcwise connected sets K,
K; and K; we have '

(17) : 9(91» Kl) = P(qp I{l) = P(gl: I{J) =
and . . } .
(18) olgi, Ky) = plgr, K.) = olgi, K;) = 7.

BEN
By the unicity part of Theorem 1 (with £ = 0) the points ¢, and ¢} have

to, coincide. Therefore we have
SO

(19) olgy, K) =7 i=1,2 ...,5.

This completes the proof of the theorem.

Remark. From the Figure 3 it can be seen that the requirement
€ard 4 2 5 of the Theorem 3 is essentially. If we comsider K; = {p;}
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Figure 3

1=1,2,3, 4, the family & = {K,, K,, K,, K,} is an independent family
of compact arcwise connected sets, such that for every three members
of & there is a point which satisfies the condition (4) of Theorem 3. But
there is no point which verifies p(g, K;) =7 for 1 =1, ..., 4.
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