MATHEMATICA - REVUE D'ANALYSE NUMÉRIOUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 6, N° 1, 1977, pp. 37-42

A HELLY-TYPE THEOREM FOR ARCWISE CONNECTED SETS IN THE PLANE by HORST KRAMEŘ

time the set of a surface with the state

Denote by R^m the real *m*-dimensional Euclidean space and by d(x, y)the metric in this space. We shall use in the sequel the following two distance functions :

 $\delta(M'\,;\,M'')\,=\,\min\,\left\{d(p',\,p''):p'\,\in\,M',\,p''\,\in\,M''
ight\}$ and

$$\rho(M', M'') = \max \{ d(p', p'') : p' \in M', p'' \in M'' \},\$$

where M' and M'' are compact subsets in \mathbb{R}^m .

Definition 1. A set M in \mathbb{R}^n is called nonseparable by hyper-planes, if there is no hyperplane H such that $H \cap M = \emptyset$ and M contains points in both the open half-spaces determined by H.

The sets, which are nonseparable by hyperplanes have been called by O. HANNER and H. RADSTROM [1] convexly connected (see also [5] p. 174).

Definition 2. The family SN of sets in Rⁿ will be called independent, if for any k pairwise distinct members M_1, M_2, \ldots, M_k of \mathfrak{M} ; $k \leq n + 1$, any set of points x_1, x_2, \ldots, x_k , where $x_i \in M_i$, $i = 1, 2, \ldots, k$, determines a simplex of dimension k-1, or equivalently the vectors $x_2 - x_1$, $x_3 - x_1, \ldots, x_n - x_1$ are linearly independent.

H. KRAMER and A. B. NÉMETH have proved in [4] the following theorem, which is needed in the sequel.

HORST KRAMER

3

A HELLY-TYPE THEOREM

UTOTATION S CALLS OF MURIE - ADDRAMATICAN

THEOREM 1. Let $M_1, M_2, \ldots, M_{n-1}$ be compact sets in \mathbb{R}^n with the property that their convex hulls conv (M_1) , conv (M_2) , ..., conv (M_{n+1}) are independent. Then there exists at least one point $q \in \mathbb{R}^n$ with the property that

(1) $\delta(q, M_1) = \ldots = \delta(q, M_k) = \rho(q, M_{k-1}) = \ldots = \rho(q, M_{n+1})$

where k is an integer $0 \le k \le n+1$ (the case k=0 or k=n+1 means that in (1) appears only ρ and respectively, only δ). In plus if each set M_i , i = 1, 2, ..., n+1 is nonseparable by hyperplanes, then the point q, with the property (1) is uniquely determined.

The following Helly-type theorem was proved in ([2], Theorem 2) by H. KRAMER and A. B. NÉMETH.

THEOREM 2. Let $\mathfrak{K} = \{K_i : i \in A\}$ be an independent family of compact convex sets in the Euclidean plane \mathbb{R}^2 with at least five members and let r be a given positive number. If for any three distinct indices i, j, l of A, there is a point q_{ijl} such that we have

$$\delta(q_{ijl}, K_i) = \delta(q_{ijl}, K_j) = \delta(q_{ijl}, K_l) = r_i$$

then there exists a point $q \in \mathbb{R}^2$ such that

(3)

 $\delta(q, K_i) = r$ for each $i \in A$.

The aim of this note is to establish a Helly-type theorem analogous to Theorem 2 for the distance function ρ in a somewhat weaker hypothesis.

THEOREM 3. Let $\mathfrak{N} = \{K_i : i \in A\}$ be an independent family of compact arcwise connected sets in the Euclidean plane \mathbb{R}^2 with at least five members and let r be a given positive number. If for any three distinct indices i, j, l of A there is a point q_{iji} such that we have

(4) $\rho(q_{ijl}, K_i) = \rho(q_{ijl}, K_j) = \rho(q_{ijl}, K_l) = r,$

then there exists a point $q \in \mathbb{R}^2$ such that

5)
$$\rho(q, K_i) = r \text{ for each } i \in A$$

For the proof of the theorem we need two lemmas.

Lemma 1. Let K' and K'' be two disjoint nonempty compact arcwise connected sest of the Euclidean plane \mathbb{R}^2 and let r be a given positive number. There are then at most two points q_1 and q_2 such that we have

(6)
$$\rho(q_i, K') = \rho(q_i, K'') = r \text{ for } i = 1, 2.$$

Proof. Suppose the contrary, i.e. there exist three distinct points q_1 , q_2 , and q_3 such that we have

7)
$$\rho(q_i, K') = \rho(q_i, K'') = r \text{ for } i = 1, 2, 3.$$

Denote by $C_i = C(q_i, r) = \{x : x \in R^2, d(x, q_i) = r\}$ the circle of centre q_i and radius r and by D_i the corresponding disc with boundary C_i . From the definition of the distance function ρ and from the hypothesis that K' and K'' are compact sets, follows

(8)
$$K' \cap C_i \neq \emptyset$$
 and $K'' \cap C_i \neq \emptyset$, $i = 1, 2, 3$.

and

From the last inclusion we get immediately

$$K' \cup K'' \subset D_1 \cap D_2 \cap D_3$$

Since the sets K' and K'' are disjoint, the intersection $D_1 \cap D_2 \cap D_3$ must contain at least one straight line segment and the boundary of $D_1 \cap D_2 \cap D_3$ has to contain an arc of each circle C_i , i = 1, 2, 3. The only possible relative position of the three circles is that indicated in the Figure 1.

It is easy to see that it is impossible to inscribe in the intersection $D_1 \cap D_2 \cap D_3$ two disjoint compact arcwise connected sets K_1 and K_2 , which have to satisfy the conditions (8) and (9). This contradiction completes the proof of Lemma 1.

39

4

A HELLY-TYPE THEOREM

Figure 2

Remark. The hypothesis that the sets K_i are arcwise connected cannot be replaced by a weaker one requiring only that each set K_i should be nonseparable by hyperplanes. This can be seen from Figure 2 in which $K_1 = K_{11} \bigcup K_{12}$ and $K_2 = K_{21} \bigcup K_{22}$.

Lemma 2. Let $\mathfrak{K} = \{K_i : i \in A\}$ be an independent family of compact arcwise connected sets in \mathbb{R}^n . Then

$\mathfrak{K}_{\mathrm{conv}} = \{ \mathrm{conv} \ K_i : i \in A \}$

is an independent family of compact sets.

Proof. As any arcwise connected set is nonseparable by hyperplanes in \mathbb{R}^n , this lemma follows immediately from Theorem 1 in [3] which asserts us the following: Let $\mathscr{F} = \{F_i : i \in A\}$ be an independent family of compact sets in \mathbb{R}^n , which are nonseparable by hyperplanes. Then $\mathscr{F}_{conv} =$ $= \{conv F_i : i \in A\}$ is an independent family of compact sets.

Proof of Theorem 3. By Lemma 1 and by the unicity part of Theorem 1 (with k = 0) it is sufficient to prove that for any four members K_i , K_j , K_l and K_m of the family \mathfrak{N} there exists a point p such that we have

$$\rho(p, K_i) = \rho(p, K_j) = \rho(p, K_l) = \rho(p, K_m).$$

Consider therefore five arbitrary members of the family \mathfrak{X} , which we shall denote by K_1, K_2, \ldots, K_5 . Corresponding to the sets K_1 and K_2 there exists by Lemma 1 at most two points q_1 and q_2 with the properties

40

1 at most two points q_1 and q_2 with the properties $\rho(q_1, K_1) = \rho(q_1, K_2) = r$

and (12)

5

$$ho(q_2, K_1) =
ho(q_2, K_2) = r.$$

For a given $i, 3 \leq i \leq 5$, the corresponding point q_{12i} has to coincide either with q_1 or with q_2 . It results that at least two of the points q_{123} , q_{124} and q_{125} have to coincide with one and the same point of q_1 and q_2 . Without loss of generality we can suppose that $q_{123} = q_{124} = q_1$. If q_{125} coincides also with q_1 , for the five sets K_1, K_2, \ldots, K_5 results the existence of a point, namely q_1 , such that

 $\rho(q_1, K_i) = r \qquad i = 1, 2, \ldots, 5.$

Consider now the case $q_{125} = q_2$. Because of the Lemma 1 there exist at most two points q'_1 and q'_2 such that

$$ho(q_1',\,\mathrm{K_1})=
ho(q_1',\,K_5)$$

and (15)

(14)

$$ho(q'_2, K_1) =
ho(q'_2, K_5) =$$

It results as above that for one of this points, let him be q'_1 , there are two indices i and j, $2 \le i < j \le 4$ such that we have

$$\rho(q'_1, K_1) = \rho(q'_1, K_i) = \rho(q'_1, K_j) = \rho(q'_1, K_j) = \rho(q'_1, K_j)$$

It results that for the independent compact arcwise connected sets K_1 , K_i and K_j we have

17)
$$\rho(q_1, K_1) = \rho(q_1, K_i) = \rho(q_1, K_j) = r$$

and

(18) $\rho(q'_1, K_1) = \rho(q'_1, K_i) = \rho(q'_1, K_j) = r.$

By the unicity part of Theorem 1 (with k = 0) the points q_1 and q'_1 have to coincide. Therefore we have

(19)

$$ho(q_1, K_i) = r$$
 $i = 1, 2, ..., 5.$

This completes the proof of the theorem.

Remark. From the Figure 3 it can be seen that the requirement card $A \ge 5$ of the Theorem 3 is essentially. If we consider $K_i = \{p_i\}$

Figure 3

i = 1, 2, 3, 4, the family $\mathfrak{A} = \{K_1, K_2, K_3, K_4\}$ is an independent family of compact arcwise connected sets, such that for every three members of \mathfrak{A} there is a point which satisfies the condition (4) of Theorem 3. But there is no point which verifies $\rho(q, K_i) = r$ for $i = 1, \ldots, 4$.

REFERENCES

- [1] Hanner, O., Radström, H., A generalization of a theorem of Fenchel. Proc. Amer. Math. Soc. 2, 589-593 (1951).
- [2] Kramer, H., Németh, A. B., Supporting spheres for families of independent convex sets. Archiv der Mathematik 24, 91-96 (1973).
- [3] Kramer, H., Supporting spheres for families of sets in product spaces, Revue d'analyse numérique et de la théorie de l'approximation 2, 49-53 (1973).
- [4] Kramer, H., Németh, A. B., Equally spaced points for families of compact sets in. Euclidean spaces. Archiv der Mathematik 25, 198–202 (1974).
- [5] Valentine, F. A., Konvexe Mengen. Bibliographisches Institut Mannheim (1968). Received 27.XII.1976.

Institutul de cercetări pentru tehnica de calcul Filiala Cluj-Napoca