MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE

ET DE THEORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 6, N° 1, 1977, pp. 37-42

A HELLY - TYPE THEOREM FOR ARCWISE CONNECTED SETS IN THE PLANE

by
HORST KRAMEIR
(Cluj-Napoca)

Denote by R^{m} the real m-dimensional Etclidean space and by $d(x, y)$ the metric in this space. We shall use in the sequel the following two distance functions:

$$
\delta\left(M^{\prime} ; M^{\prime \prime}\right)=\min \left\{d\left(p^{\prime}, p^{\prime \prime}\right): p^{\prime} \in M^{\prime}, p^{\prime \prime} \in M^{\prime \prime}\right\}
$$

and

$$
\rho\left(M^{\prime}, M^{\prime \prime}\right)=\max \left\{d\left(p^{\prime}, p^{\prime \prime}\right): p^{\prime} \in M^{\prime}, p^{\prime \prime} \in M^{\prime \prime}\right\}
$$

where M^{\prime} and $M^{\prime \prime}$ are compact strbsets in R^{m}.
Definition 1. A set M in \mathbf{R}^{n} is called nonseparable by hyperplanes, if there is no hyperplane H such that $H \cap M=\varnothing$ and M contains points in both the open half-spaces determined by H.

The sets, which are nonseparable by hyperplanes have been called by O. HANNER and H. RADSTROM [1] convexly connected (see also [5] p. 174).

Definition 2. The family g of sets in R^{n} will be called independent, if for any k pairwise distinct members $M_{1}, M_{2}, \ldots, M_{k}$ of \mathfrak{M}; $k \leqq n+1$, any set of points $x_{1}, x_{2}, \ldots, x_{k}$, where $x_{i} \in M_{i}, i=1,2, \ldots, k$, determines a simplex of dimension $k-1$, or equivalently the vectors $x_{2}-x_{1}$, $x_{3}-x_{1}, \ldots, x_{n}-x_{1}$ are linearly independent.
H. KRAMER and A. B. NEMETH have proved in [4] the following theorem, which is needed in the sequel.

THEOREM 1. Let $M_{1}, M_{2}, \ldots, M_{n}$ be compact sets in R^{n} with the property that their convex hulls conv $\left(M_{1}\right)$, conv $\left(M_{2}\right), \ldots$, conv $\left(M_{n+1}\right)$ are independent. Then there exists at least one point $q \in \mathbb{R}^{n}$ with the property that
(1) $\delta\left(q, M_{1}\right)=\ldots=\delta\left(q, M_{k}\right)=p\left(q, M_{k-1}\right)=\ldots=p\left(q, M_{n+1}\right)$
where k is an integer $0 \leqq k \leqq n+1$ (the case $k=0$ or $k=n+1$ means that in (1) appears only ρ and respectively, only δ). In plus if each set M_{i}, $i=1,2, \ldots, n+1$ is nonseparable by hyperplanes, then the point q, with the property (1) is uniquely determined.

The following Helly-type theorem was proved in ([2], Theorem 2) by h. KRAMER and A. B. NEMETH.

THEOREM 2. Let $\mathcal{M}=\left\{K_{i}: i \in A\right\}$ be an independent family of compact convex sets in the Euclidean plane R^{2} with at least five members and let r be a given positive number. If for any three distinct indices i, j, l of A, there is a point $q_{i j l}$ such that we have

$$
\begin{equation*}
\delta\left(q_{i j}, K_{i}\right)=\delta\left(q_{i j}, K_{j}\right)=\delta\left(q_{i j}, K_{l}\right)=r, \tag{2}
\end{equation*}
$$

then there exists a point $q \in R^{2}$ such that

$$
\begin{equation*}
\delta\left(q, K_{i}\right)=r \text { for each } i \in A \tag{3}
\end{equation*}
$$

The aim of this note is to establish a Helly-type theorem analogous to Theorem 2 for the distance function ρ in a somewhat weaker hypothesis.

THEOREM 3. Let $K=\left\{K_{i}: i \in A\right\}$ be an independent family of compact arcwise connected sets in the Euclidean plane R^{2} with at least five members and let r be a given positive number. If for any three distinct indices i, j, l of A there is a point $q_{i j l}$ such that we have

$$
\begin{equation*}
\rho\left(q_{i j}, K_{i}\right)=\rho\left(q_{i j l}, K_{j}\right)=\rho\left(q_{i j l}, K_{l}\right)=r, \tag{4}
\end{equation*}
$$

then there exists a point $q \in R^{2}$ such that

$$
\begin{equation*}
\rho\left(q, K_{i}\right)=r \text { for each } i \in A \text {. } \tag{5}
\end{equation*}
$$

For the proof of the theorem we need two lemmas.
Le emma 1. Let K^{\prime} and $K^{\prime \prime}$ be two disjoint nonempty compact arcwise connected sest of the Euclidean plane R^{2} and let r be a given positive number. There are then at most two points q_{1} and q_{2} such that we have

$$
\begin{equation*}
\rho\left(q_{i}, K^{\prime}\right)=\rho\left(q_{i}, K^{\prime \prime}\right)=r \text { for } i=1,2 . \tag{6}
\end{equation*}
$$

Proof. Suppose the contrary, i.e. there exist three distinct points q_{1}, q_{2}, and q_{3} such that we have

$$
\begin{equation*}
\rho\left(q_{i}, K^{\prime}\right)=\rho\left(q_{i}, K^{\prime \prime}\right)=r \text { for } i=1,2,3 . \tag{7}
\end{equation*}
$$

Denote by $C_{i}=C\left(q_{i}, r\right)=\left\{x: x \in R^{2}, d\left(x, q_{i}\right)=r\right\}$ the circle of centre q_{i} and radius r and by D_{i} the corresponding disc with boundary C_{i}. From the definition of the distance function ρ and from the hypothesis that K^{\prime} and $K^{\prime \prime}$ are compact sets, follows

$$
\begin{equation*}
K^{\prime} \cap C_{i} \neq \varnothing \text { and } K^{\prime \prime} \cap C_{i} \neq \varnothing, i=1,2,3 \tag{8}
\end{equation*}
$$

and
(9)

$$
K^{\prime} \cup K^{\prime \prime} \subset D_{i} \quad i=1,2,3
$$

From the last inclusion we get immediately

$$
\begin{equation*}
K^{\prime} \cup K^{\prime \prime} \subset D_{1} \cap D_{2} \cap D_{3} \tag{10}
\end{equation*}
$$

Since the sets K^{\prime} and $K^{\prime \prime}$ are disjoint, the intersection $D_{1} \cap D_{2} \cap D_{3}$ must. contain at least one straight line segment and the boundary of $D_{1} \cap D_{2} \cap D_{3}$ has to contain an arc of each circle $C_{i}, i=1,2,3$. The only possible relative position of the three circles is that indicated in the Figure 1.

Figure 1.
It is easy to see that it is impossible to inscribe in the intersection $D_{1} \bigcap D_{2} \cap D_{3}$ two disjoint compact arcwise connected sets K_{1} and K_{2}, which have to satisfy the conditions (8) and (9). This contradiction completes the proof of Lemma 1.

Figure 2
Remark. The hypothesis that the sets K_{i} are arcwise connected cannot be replaced by a weaker one requiring only that each set K_{i} should be nonseparable by hyperplanes. This can be seen from Figure 2 in which $K_{1}=K_{11} \cup K_{12}$ and $K_{2}=K_{21} \cup K_{22}$.

L e mm m 2. Let $\mathscr{K}=\left\{K_{i}: i \in A\right\}$ be an independent family of
pact arcwise connected sets in R^{n}. Then compact arcwise connected sets in R^{n}. Then
is an independent family of compact sets.
Proof. As any arcwise connected set is nonseparable by hyperplanes in R^{n}, this lemma follows immediately from Theorem 1 in [3] which asserts us the following: Let $\bar{F}=\left\{F_{i}: i \in A\right\}$ be an independent family of compact sets in R^{n}, rehich are nonseparable by hyperplanes. Then $\mathscr{F}_{\text {conv }}=$ $=\left\{\operatorname{conv} F_{i}: i \in A\right\}$ is an independent family of compact sets.

Proof of Theorem 3. By Lemma 1 and by the unicity part of Theorem 1 (with $k=0$) it is sufficient to prove that for any four members K_{i}, K_{j}, K_{l} and K_{m} of the family $\mathscr{J C}$ there exists a point p such that we have

$$
\rho\left(p, K_{i}\right)=\rho\left(p, K_{j}\right)=\rho\left(p, K_{l}\right)=\rho\left(p, K_{m}\right)
$$

Consider therefore five arbitrary members of the family \mathscr{F}, which we shall denote by $K_{1}, K_{2}, \ldots, K_{5}$. Corresponding to the sets K_{1} and K_{2} there exists by Lemma 1 at most two points q_{1} and q_{2} with the properties (11)

$$
\rho\left(q_{1}, K_{1}\right)=\rho\left(q_{1}, K_{2}\right)=r
$$

and

$$
\begin{equation*}
\rho\left(q_{2}, K_{1}\right)=\rho\left(q_{2}, K_{2}\right)=r \tag{12}
\end{equation*}
$$

For a given $i, 3 \leqq i \leqq 5$, the corresponding point $q_{12 i}$ has to coincide either with q_{1} or with q_{2}. It results that at least two of the points q_{123}, q_{124} and q_{125} have to coincide with one and the same point of q_{1} and q_{2}. Without loss of generality we can suppose that $q_{123}=q_{124}=q_{1}$. If q_{125} coincides also with q_{1}, for the five sets $K_{1}, K_{2}, \ldots, K_{5}$ results the existence of a point, namely q_{1}, such that

$$
\begin{equation*}
\rho\left(q_{1}, K_{i}\right)=r \quad i=1,2, \ldots, 5 . \tag{13}
\end{equation*}
$$

Consider now the case $q_{125}=q_{2}$. Because of the Lemma 1 there exist at most two points q_{1}^{\prime} and q_{2}^{\prime} such that

$$
\begin{equation*}
\rho\left(q_{1}^{\prime}, \mathrm{K}_{1}\right)=\rho\left(q_{1}^{\prime}, K_{5}\right)=r \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho\left(q_{2}^{\prime}, K_{1}\right)=\rho\left(q_{2}^{\prime}, K_{5}\right)=r . \tag{15}
\end{equation*}
$$

It results as above that for one of this points, let him be q_{1}^{\prime}, there are two indices i and $j, 2 \leqq i<j \leqq 4$ such that we have

$$
\begin{equation*}
\rho\left(q_{1}^{\prime}, K_{1}\right)=\rho\left(q_{1}^{\prime}, K_{i}\right)=\rho\left(q_{1}^{\prime}, K_{j}\right)=\rho\left(q_{1}^{\prime}, K_{5}\right) \tag{16}
\end{equation*}
$$

It results that for the independent compact arcwise connected sets K_{1}, K_{i} and K_{j} we have

$$
\begin{equation*}
\rho\left(q_{1}, K_{1}\right)=\rho\left(q_{1}, K_{i}\right)=\rho\left(q_{1}, K_{j}\right)=r \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho\left(q_{1}^{\prime}, K_{1}\right)=\rho\left(q_{1}^{\prime}, K_{i}\right)=\rho\left(q_{1}^{\prime}, K_{j}\right)=\dot{\gamma} \tag{18}
\end{equation*}
$$

By the unicity part of Theorem 1 (with $k=0$) the points q_{1} and q_{1}^{\prime} have to coincide. Therefore we have

$$
\begin{equation*}
\rho\left(q_{1}, K_{i}\right)=r \quad i=1,2, \ldots, 5 \tag{19}
\end{equation*}
$$

This completes the proof of the theorem.
Remark. From the Figure 3 it can be seen that the requirement card $A \geqq 5$ of the Theorem 3 is essentially. If we consider $K_{i}=\left\{p_{i}\right\}$

Figure 3
$i=1,2,3,4$, the family $\mathscr{X}=\left\{K_{1}, K_{2}, K_{3}, K_{4}\right\}$ is an independent family of compact arcwise connected sets, such that for every three members of \mathscr{K} there is a point which satisfies the condition (4) of Theorem 3. But there is no point which verifies $\rho\left(q, K_{i}\right)=r$ for $i=1, \ldots, 4$.

REFERENCES

[1] Hanner, O., R adstrom, H., A generalization of a theorem of Fenchel. Proc. Amer. Math. Soc. 2, $589-593$ (1951).
[2] Kramer, H., Németh, A. B., Supporting spheres for families of independent convex sets. Archiv der Mathematik 24, 91-96 (1973).
[3] K r a mer, H., Supporting spheres for families of sets in product spaces, Revue d'analyse nutnérique et de 1a théorie de l'approximation 2, $49-53$ (1973).
[4] K ramer, H., Németh, A. B., Equally spaced points for families of compact sets in . Euclidean spaces. Archiv det Mathematik 25, 198-202 (1974).
[5] Valentine, F. A., Konvexe Mengen. Bibliographisches Institut Mannheim (1968).

[^0]Institutul de cericetări
pentru tehnica de calcul
Filiala Cluj-Napoca

[^0]: Received 27.XII. 1976.

