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1. Introduction '

It is known [1] that every degenerated geometric program, which is
not totally degenerated, can be reduced to an equivalent canonical geo-
metric program, called reduced form of the corresponding geometric
program. The purpose of this paper is to describe a constructive method
which permits such a reduction. First some criteria for canonical geometric
programs in terms of dual constraints are given. Then a simplex-like tech-
nique for the construction of the irreductible integer set [1, pag. 169]
is described. To illustrate the algorithm a small numerical example is also
considered.

2. Degeneracy eriteria

Let
(P) inf {po(*) | £,(%)' < 1, E=1,2,...,p;% > 0}

be a standard geometric program, where

i i s a.
| i2 in
E:u S )R e s %
s"‘:fk

|EI

15 a posinomial, ie. ¢; € R,, a; € R, and I, are integer sets such that

b4
LNL=9 kzxh UI,={,2 ..., m.
k=0
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As it is known [1], the dual of (P) is the following program : ~ S0y = (a° 0) is a basic feasible solution (b.f.s.) to (D) if and only
, LRy \ if d° > 0. We assume that d° > 0.
(D) sup {v(y) | ATy =0, Lly =1;y >0} el T
: et . @ I, = {i|d;=0)
where AT is transpose of the exponent matrix 4 — (a;) and v is the dual ‘ . :
function, i.e, then we have the following basic criterion for the canonical geometric
" 3 programs. ‘
o(y) = T1 (ﬁ) TT ()Y THEOREM 1. Let v = d0 + DyV be given in (1) and d > 0. Geometric
ol =1  program (P) is camowical if and only if
M) =2 5. 3) b = max {min {Z"} | dyy = b, y > 0} > 0. .

D
Let Q and Q* be the sets of feasible solutions to (P) and (D) respectively.

We design by Proof. Necessity. If (P) is a canonical program then there is 5y sRY

| such that

I'={|3y Q% y>0 it
the irreductible integer set. If I' = {1, 2, ..., m}, then program (P) (and ie. ] ) :
program (D)) is called canomical [1, pag. 169]. Otherwise program( (P) J% =d® + DyN¥ > 0, 5V > 0.
is called degeneraled. If ' "N I, = J, then program (P) is called totally i So
degenerated. . Vi < I = digh > 0

Let us put the dual constraints in the matricial form : and, therefore,

Ay =0b, 3 >0, min @70 < I} > 0.

Because § € Q* it follows that

where
p = max {min {&*y"} |4,y = b, y > 0} > min {dig¥} > 0.
il : il
1 1...10...0 . ? . D. T
A, = 2 ), b= 0 ; Sufficiency. Assume w > 0. Then there is y* = (¥'8, y*™M7T such that
' 0 . g = min dy*N > 0
F, o'EID

In what follows we will use the notatjon : Le.

o Vi I, = diy'¥ > 0.

+ + Without loss of generality, we can assume that y*N > 0, since other-
wise by taking y<¥ = " 4+ ¢ ¢ = R*, we have

ak = (ailr Aigy ooy ain): ad = (alj! Aojs o v v,y amj)T

for the row vector and column vector respectively of a given matrix '.
== (a,-,). We will as]saun.le that rankz‘:l = ;’Z . d,'.yeN: di'(y‘N =L S) . di'y*N e di-e ~ 0, = ID
Let B and N be basic and nonbasic column vectors of the matrix 4, h for ¢ = 0 sufficiently small. So in this case

respectively, and y%, ¥V corresponding basic and nonbasic variables. Then

each y € Q* can be written under the form : y = (¥%, »V), where L yB = 4o 4 Dy % 0.
(1) ¥8 = B — BUINy¥ — 4.0 4 3 diy¥ > 0, YN > 0, - Let 40 = (y0B, yov) — (@°, 0) = Q*, We consider
where i y(t) = (1 —2)y° 4 ty*, ¢ = [0, 1_}]‘. Clearly

@° = B~%, D = — BN, (R P =ty7 >0, 1> 0
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and

YE(t) = d0 4 tDysV.
If i & I, then dyy = 0, and it follows that
®) Y20 = tdiy >0,
If ¢ & I, then d; > 0, and we have

vt 70, 1].

) Vi) = dio + Hdby") > 0

for every ¢ > O dufficiently small. Therefore, for ¢ > 0 sufficiently small
yB(¢) > 0. From (4), (5) and (5') it follows that for ¢ = ]0, 1] sufficiently
small,

¥ = (), yV@) > 0.

According to the convexity of Q%, y*, 40 = Q* implies that y(f) = Q¥*,
So program (P) is canonical.

Corollary 1. Let y2 =4+ DyN be given in (1), d° 2 0 and
I, #@. If © € I, and

(6) p, = max {dyN| A,y =b, y >0} =0

then program (P) is degemerated and yi =0 for each y < Q.
Proof. If n, = 0, then

@ = max {min {d*y¥} | 4,y =b, ¥ > 0} <
iel,
< min {max {d"yV |4,y = b, vy > 0} <
iel,

< max {d¥yN | A1y =b, vy > 0} =p, = 0.

From Theorem 1 it.follows that (P) is degenerated. Moreover, in this
case ‘

(7) ¥y € QF = 57 = digV < 0,
ie. y@ =0. "
Remark 7. From (7) it follows that
YW=0ey =0, ¥ = ]={jd;>0}
since d;; 20, 7=1,2,...,n.

THEOREM 2. If dual program (D) has a nondegenerated b.f.s., then program
(P) @s canonical.
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Proof. Let ¥ = (4, 0) = Q* be a nondegenerated b.f.s. Then 4> 0.
So for y¥ > 0 sufficiently small (ie. 0 <y, <e 1=12 ..., n) we
have

y2=d°+ DyV >0
and, therefore, program (P) is canonical.
THEOREM 3. Let y% = d* + DyN be given in (1) and 1, # ®. If
Vi €Iy =y, =max {dyN | A,y =5,y >0} >0

then program (P) is canonical.
Proof. Let y* € Q* be the optimal solution to (6), i.e.

diy* = max {diyN |y € Q*}, ¢ € I,

Consider ¢, = 10, 1[, « & I}, with 3 # = 1. From the convexity of
Q% we have
Yt =27ty = O,

iEID

So
dyV() = T tdiy™ > tdiy® > 0, i < I,
t=Ip

and, therefore,

max{min {d*y¥ |y € Q*} > min {d"yV(#)} > 0.
ier, ielp

Now from Theorem 1 it follows that (P) is canomnical.

. 3. Statement of the algorithm

The results of the previous section are now incorporated into the,
following algorithm, which permits to establish whether a given geometric
program is canomical or not. In the last case the procedure permits to
select all components y, which are zero for each dual feasible solutions
Y € Q* and therefore, to reduse every degenerated geometric program
(which is not totally degenerated) to a canonical one (its reduced form).

Algorithm

Step 7. Apply the simplex method to find a b.f.s. of the form (1)
to. the dual geometric program (D).

Step 2. Test for the degeneracy of the basic feasible solution. If
b.is. is not degenerated then terminate, geometric program is canonical
(Theorem 2). Otherwise go to Step 3.

. Step 3. Construct the set I, defined in (2).
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Step 4. Solve problem (6) for the first 1 « Iy,
to another ¢+ = I,,. Otherwise put y; = 0 for all

j U k|d, > 0}
and go to another ¢ & I}, or terminate if all ¢ & I, were tested.

If p; >0, then go

4. Example

Consider the following geometric program

inf {po(x) = %125 + 2x,2712322 + %471}

subject to
Pi(x) = 2x5 + x5tadxd < 1,
Po(%) = 23, + x7'x5t < 1, %, > 0, ji=1,2 3, 4.

The corresponding dual sistem is:

Y1+ Y+ ys =1

Y1+ Y+ s — Y, =0

— Y2 — Y5 =0

Y1+29 =¥+ v+ 3y — ¥ — v, =0
2y, + Sys + v =0,y,20,7=1, ...,7.

Step 7. To find a bfs. we start from the simplex tableau:

—Y1 —Y: —Ys — Y1 —Ys —Ys —Vn il
0=| 1 1 10 0 0 0 1
0=| 1 1 10 01 0% i 0
0=| 0 —1 0 0 —1 0 0 0
0=| 1 2T, il SIS 0
0= 0 2 0 0 5 1 0 0

‘After five Gauss-Jordan steps, we get the following b.f.s.

—Y2 —¥s 1

Vy = 0 0 1

Y= 1 111

(7) Vs = 1 0|0
Y= | —5 —21]0

Y=1-—3 0]0
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Step 2. It is clear that b.fs. y = (1,0,0,0,0,0, 1) is degenerated.
Step 3. I, = {4, 5, 6}.

Step 4. To maximize y, we start with simplex tableau:
—Y: =¥ 1
Ve = 0 1
Vs = 1., ;01.0
yo= | =5 —2 1|0
ye = '_'3 O O
After two Gauss-Jordan steps we ’get the tableau :
—¥s —¥ 1
yq = 0 O 1
vy = | —1 1 1
yz - 1 O O
Vo = 3 L2002
vu=| 8 2| 2
ie.

max {y, |y € Q% =2 > 0.

, From (7) it is seen that -

y5: _y2 <0) Vy2 20;

le. max {y; |y < Q* =0, and so y, = y; = 0. From (7) we also have

Yo =3y, =0

Therefore, the reduced form of the initial program is:

(8) inf {Po(x) = %1%, + %5 1}

subject to

®) Pr(x) = 27, < 1

Pol%) = 272571 < 1, %, %3 > 0.

4 Mathematica — Revue d’analyse numérique et de [héorie de l’approximation — Tome 6. N° 1/1977.
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The dual of (8)—(9) is:
sup {17(3;)’ = (l)"‘(l)"’

2Y\¥s (1% |
P
bt Vs Ya) V)

Y1+ e =1
Y1+ s —:=0
Y1 =Yt Ys ~ 9 =0, 91, 95, ¥, 34 2 0.
The optimal solution of this dual program is
y* = (1/5, 4/5, 8/5, 1), #(y*) = 5.
Using the duality theorem [1, chapter IV] we find that x* — (2,
is the optimal solution ‘to the reduced program, ie. p4(x*) =
=min {o(%) | p1(x) < 1, Fu(x) < 1, x,, %3 > 0}.

It follows that inf p4(x) = 5, but the initial program has no optimal
solution, because 5 = p,(2, 0, 1/2,0), ie. %, = 2, =0. h

1/2)
5—

REFERENCES

[1] Duffin, R. J.; Peterson, E. L.: Zener, C, Geometric jbrogmmming-theory and
application. John Willey, New York, 1967.
[2] Marugciac, I, Metode de vezoivare a problemelor de programare neliniard. Editura Dacia,

1973.

Received 29. XII. 76. | y
Universitatea

»»Babes — Bolyai"’
Cluj-Napoca
Facultatea de Mate-
maticd,
Catedra de Analizé




