MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 6, N° 1, 1977, pp. 51-56

A CHARACTERISATION OF CHEBYSHEVIAN SUBSPACE OF Y¹ - TYPE

by COSTICĂ MUSTĂTA

(Cluj-Napoca)

1. Let be given a real linear space Z. For any nonvoid set E we denote by Z^E the linear space of all functions from E to Z with the operations of addition and multiplication by real scalars defined pointwisely.

Consider now two nonvoid sets X, Y such that $Y \subseteq X$ and two normed linear subspace M_X and M_Y of Z^X , respectively of Z^Y , such that $f|_Y \in M_Y$ for all $f \in M_X$, where $f|_Y$ denotes the restriction of f to Y. Denote by $\|\cdot\|_X$ and $\|\cdot\|_Y$ the norms on M_X , respectively M_Y .

Definition 1. We say that the norm $\| \cdot \|_Y$ is compatible with the norm $\| \cdot \|_X$ if

for all
$$f \in M_{\chi}$$
.

 $||f|_{Y}||_{Y} \leq ||f||_{X},$

In the sequel, the norms $\| \ \|_{X}$ and $\| \ \|_{Y}$ will considered always compatible.

Let $K_X \subseteq M_X$ and $K_Y \subseteq M_Y$ be two convex cones with the vertex in the origin of M_X , respectively M_Y such that $f|_Y \in K_Y$, for all $f \in K_X$.

Definition 2. We say that K_Y is a P-cone if for all $f \in K_Y$ there exists $F \in K_X$ such that

- 1) $f = F|_{Y}$
- 2) $||f||_Y = ||F||_X$.

If further, the function F with the properties 1) and 2) is unique, K_Y is called PU-cone. The function F is called an extension of f.

2

2. Let

$$(2) X_K = K_X - K_X,$$

be the linear subspace of M_X , generated by the cone K_Y and

COSTICĂ MUSTĂTA

(3)
$$Y_{X_K}^{\perp} = \{g : g \in X_K, g|_Y = \theta_Y\},$$

where θ_Y denotes the zero function in M_Y , i.e. $\theta_Y(y) = 0$, for all $y \in Y$.

Definition 3. We say that the subspace $Y_{X_K}^{\perp}$ is K_K — proximinal if for all $f \in K_X$ there exists an element $g_0 \in Y_{X_K}^{\perp}$ such that

$$(4) ||f - g_0||_X = d(f, Y_{X_K}^{\perp}) = \inf\{||f - g||_X : g \in Y_{X_K}^{\perp}\}.$$

If further, for all $f \in K_X$ there exists a unique $g_0 \in Y_{X_K}^{\perp}$ such that the equality (4) holds, then $Y_{X_K}^{\perp}$ is called K_X —Chebyshveian. An element $g_0 \in Y_{X_K}^{\perp}$ such that $||f - g_0||_X = d(f, Y_{X_K}^{\perp})$ is called an element of best approximation of f by elements of $Y_{X_K}^{\perp}$.

3. The following two theorems show that the best approximation properties of the subspace $Y_{X_K}^{\perp}$ in M_X are connected with the extension properties of K_Y .

THEOREM 1. If K_Y is a P-cone then:

(a) for all $f \in K_X$, the following equality holds

(5)
$$||f|_{Y}|| = d(f, Y_{X_{K}}^{\perp});$$

(b) for every $f \in K_X$, the elements of best approximation of f by elements of $Y_{X_K}^{\perp}$ are exactly the elements of the form f - F, where F is an extension of $f|_{V}$.

Proof. (a) For $g \in Y_{X_K}^{\perp}$ we have:

$$||f|_Y||_Y = ||f|_Y - g|_Y||_Y = ||(f - g)|_Y||_Y \le ||f - g||_X$$

such that $||f|_{Y}||_{Y} \leq d(f, Y_{X_{R}}^{1}).$

On the other hand,

$$\|f|_Y\|_Y = \|f - (f - F)\|_X \ge \inf \left\{ \|f - g\|_X \colon g \in Y_{X_K}^\perp \right\} = d(f, Y_{X_K}^\perp),$$

where F is an extension of $f|_{Y}$ to X. Therefore, the equality (5) holds.

(b) If $f \in K_X$ and $g \in Y_{X_K}^{\perp}$ is an element of best approximation of f, then by (5), $||f - g||_X = d(f, Y_{X_K}^{\perp}) = ||f|_Y||_Y$ and $(f - g)|_Y = f|_Y$. It follows

that f - g is an extension of $f|_Y$ to X. The fact that f - F is a best approximation of f by elements of $Y_{X_K}^{\perp}$, for every extension F of $f|_Y$ to X, follows by the equalities:

CHEBYSHEVIAN SUBSPACE

$$d(f, Y_{X_K}^{\perp}) = ||f|_Y||_Y = ||f - (f - F)||_X.$$

THEOREM 2. (a) If K_Y is a P-cone, then $Y_{X_K}^{\perp}$ is K_X -proximinal;

(b) If K_Y is a P-cone, then $Y_{X_K}^{\perp}$ is K_X -Chebyshevian if and only if K_Y is a PU-cone.

Proof. The theorem follows from theorem 1 (b).

If $K_{\mathbf{v}} = M_{\mathbf{v}}$ and $K_{\mathbf{v}}$ is P — cone, respectively PU — cone, then $M_{\mathbf{v}}$ is called P — space, respectively PU — space.

Let us denote by Y^{\perp} , the following subspace of M_X :

(6)
$$Y^{\perp} = \{f : f \in M_X, f|_Y = \theta_Y\}.$$

Then, the theorems 1 and 2 become:

THEOREM 3. If M is P — space, then:

(a) for all $f \in M_X$, the following equality holds:

(7)
$$||f|_Y||_Y = d(f, Y^{\perp});$$

(b) for every $f \in M_X$, the elements of best approximation of f by elements of Y^{\perp} are exactly the elements of the form f - F, where F is an extension of $f|_Y$ to X.

THEOREM 4. (a) If M_Y is a P — space, then Y^{\perp} is proximinal; (b) If M_Y is a P — space, then Y^{\perp} is Chebyshevian if and only if M_Y is a PU — space.

For the definition of proximinal and Chebyshevian sets see [9].

4. We shall give some particular cases of the above theorems.

I. If X is a normed linear space, Y a linear subspace of X, X^* the conjugate space of X, Y^* the conjugate space of Y, then by the Hahn-Banach theorem, Y^* is a P — space. In this case, theorem 3 (a) and theorem 4 (b) were proved by R. R. PHELPS [8].

II. For a metric space (X, d), a subset Y of X and a fixed element x_0 of Y, let

(8)
$$\operatorname{Lip}_{0} X = \{ f \colon f \colon X \to \mathbb{R}, \sup_{\substack{x \neq y \\ x, y \in X}} \frac{|f(x) - f(y)|}{d(x, y)} < \infty, f(x_{0}) = 0 \},$$

(9)
$$\operatorname{Lip}_{0} Y = \{h: h: Y \to \mathbb{R}, \sup_{\substack{x \neq y \\ x,y \in Y}} \frac{|h(x) - h(y)|}{d(x, y)} < \infty, h(x_{0}) = 0\},$$

be the linear space of Lipschitz functions on X, respectively Y, which vanish on x_0 , with the norms

(10)
$$||f||_X = \sup \{|f(x) - f(y)| / d(x, y) : x \neq y, x, y \in X\},$$

(11)
$$||h||_{Y} = \sup \{|h(x) - h(y)| / d(x, y) : x \neq y, x, y \in Y\}.$$

By a theorem of s. Banach [1], rediscovered by J. czipser and L. Géher [2], the space $\operatorname{Lip}_0 Y$ is a P-space with respect to $\operatorname{Lip}_0 X$. In this case, theorems 3 and 4 were proved in [5].

III. A topological space is called extremally disconnected if the closure of every open set is open. If Ω is a compact Hausdorff space, denote by $C(\Omega)$ the Banach space of all continuous real functions defined on Ω with the sup-norm.

Let Ω be an extremally disconnected compact Hausdorff space, X a Banach space, Y a subspace of X. By a theorem of L NACHBIN [6] $L(Y, C(\Omega))$ is a P-space in $L(X, C(\Omega))$, so that theorems 3 and 4 can be applied. Here L(E, F) denotes the space of all continuous linear operators between the Banach spaces E and F.

IV. Let (X, d) be a metric linear space, d being a invariant metric translation, i.e. $d(x, y) = d(x - y, \theta)$. Let

(12)
$$S_X^{\circ} = \{f : f : X \to \mathbf{R}, \sup \{|f(x)|/d(x, \theta) : x \neq \theta, x \in X\} < \infty, f(\theta) = 0, f(x + y) \leq f(x) + f(y), x, y \in X\},$$

be the cone defined by G. PANTELIDIS [7].

For a subspace Y of X, the cone $S_{\mathcal{Y}}^{\circ}$ is defined in a similar way. It was proved in [5], that $S_{\mathcal{X}}^{\circ}$ is a convex cone in $\operatorname{Lip}_{0}X$, $S_{\mathcal{Y}}^{\circ}$ is a convex cone in $\operatorname{Lip}_{0}X$, $S_{\mathcal{Y}}^{\circ}$ is a P-cone.

$$(13) X_S = S_X^{\circ} - S_X^{\circ},$$

be the linear space generated by the cone S_X° . In this case, theorem 1 and theorem 2 were proved in [5].

V. If X is a normed linear space, Y a nonvoid convex subset of X such that $\theta \in Y$, put

(14)
$$C_X = \{f : f \in \text{Lip}_o X, f \text{ is convex}\},$$

(15)
$$C_{Y} = \{h : h \in \text{Lip}_{o}Y. \ h \text{ is convex}\}.$$

Then C_y is a P-cone and theorem 1 and theorem 2 can be applied.

5. In this section we intend to study the relation between the extremal elements of the unit ball of M_Y and the faces of the unit ball of M_X (the notation are as in section 1.).

If (E, || ||) is a normed space, denote by B_E and S_E the unit ball, respectively the unit sphere of E, i.e.

(16)
$$B_E = \{x \in E : ||x|| \le 1\},$$

$$S_E = \{x \in E : ||x|| = 1\}.$$

An extremal element of a convex set C in a linear space E is an element $x \in C$ such that $\lambda x_1 + (1 - \lambda)x_2 = x$ for $x_1, x_2 \in C$ and $\lambda \in (0, 1)$ implies $x_1 = x = x_2$.

implies $x_1 = x = x_2$. A face of the unit ball B_E is a convex subset F of S_E such that $\lambda x_1 + (1 - \lambda)x_2 \in F$ for $x_1, x_2 \in B_E$ and $\lambda \in (0, 1)$ implies that $x_1, x_2 \in F$. Obviously, a face which contain exactly one element is an extremal element of B_E .

For $h \in M_{\nu}$, denote by

(17)
$$P_{Y}(h) = \{f : f \in M_{X}, f|_{Y} = h, ||f||_{X} = ||h||_{Y}\},$$

the set of all extension of h.

Then $P_Y(h)$ is a nonvoid, convex, bounded and closed subset of M_X .

THEOREM 5. An element $h \in B_{M_Y}$ is an extremal element of B_{M_Y} if and only if $P_Y(h)$ is a face of B_{M_Y} .

Proof. Suppose h is an extremal element of B_{M_Y} . Let $\lambda \in (0, 1)$ and $f_1, f_2 \in B_{M_X}$ be such that $\lambda f_1 + (1 - \lambda) f_2 \in P_Y(h)$. Then $\lambda f_1|_Y + (1 - \lambda) f_2|_Y = h$, and since h is an extremal element of B_{M_Y} , it follows that $f_1|_Y = f_2|_Y = h$, so that $||f_1|_Y||_Y = ||f_2|_Y||_Y = ||h||_Y = 1$. Since the norms $|| \cdot \cdot ||_X$ and $|| \cdot \cdot ||_Y$ are supposed compatible (see definition 1.) it follows that $||f_1|_X = ||f_2|_X = 1$. We proved that $f_1, f_2 \in P_Y(h)$ which shows that $P_Y(h)$ is a face of B_{M_Y} .

Conversely, suppose h is not an extremal element of B_{M_Y} . Then there exist two elements h_1 , $h_2 \in B_{M_Y}$, $h_1 \neq h$, $h_2 \neq h$ and $\lambda \in (0, 1)$ such that $\lambda h_1 + (1-\lambda)h_2 = h$. Let $f_1' \in P_Y(h_1)$ and $f_2' \in P_Y(h_2)$. Then $\lambda f_1'|_Y + (1-\lambda)f_2'|_Y = h$ and $1 = \|\lambda f_1'|_Y + (1-\lambda)f_2'|_Y\|_Y \leqslant \|\lambda f_1' + (1-\lambda)f_2'\|_X \leqslant 1$, so that $\lambda f_1' + (1-\lambda)f_2' \in P_Y(h)$. But f_1' and f_2' do not belong to $P_Y(h)$ since $f_1'|_Y \neq h$ and $f_2'|_Y \neq h$, so that $P_Y(h)$ is not a face of B_{M_Y} .

Suppose now, $\operatorname{Lip}_0 X$ and $\operatorname{Lip}_0 Y$ be as in the case II. from section 4. If $h \in \operatorname{Lip}_0 Y$, then the functions

(18)
$$f_1(x) = \inf \{h(y) + ||h||_Y d(x, y) : y \in Y\}, x \in X,$$
$$f_2(x) = \sup \{h(y) - ||h||_Y d(x, y) : y \in Y\}, x \in X$$

are extensions of h (see [4]) and further, they are extremal elements of the set $P_{\nu}(h)$.

Indeed, one can prove that

$$(19) f_2(x) \leqslant f(x) \leqslant f_1(x), \quad x \in X,$$

for all $f \in P(h)_Y$ (see [5]). If φ , $\psi \in P_Y(h)$ and $\lambda \in (0, 1)$ are such that $\lambda \varphi + (1 - \lambda)\psi = f_1$, then

$$(20) \qquad 0 \leqslant \lambda(f_1 - \varphi) = (1 - \lambda)(\psi - f_1),$$

and by (19) it follows $\varphi = \psi = f_1$, so that f_1 is an extremal element of $P_Y(h)$. In a similar way one can show that f_2 is an extremal element of $P_Y(h)$.

Since, by theorem 5, h is an extremal element of $B_{\text{Lip}_0 Y}$ if and only if $P_Y(h)$ is a face of $B_{\text{Lip},X}$, and an extremal element of a face of the unit ball of a normed linear space is an extremal element of the ball, it follows:

If h is an extremal element of the unit ball of LipoY, then the functions f1, f2 defined by the formulae (18) are extremal elements of the unit ball of $\operatorname{Lip}_0 X$.

REFERENCES The state of the s

- [1] Banach, S., Wstep to teorii funkji rzeczywistych, Warszawa-Wrocław, 1951.
- [2] Czipser, J., Géher, L., Extension of function satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar., 6, 213-220, (1955).
- [3] Kolumbán, I., Ob edinstvenosti prodolzenia lineinyh funktionalov, Mathematica (Cluj), 4 (27), 267-270, (1962).
- [4] Mustăța, C., Asupra unor subspații cebîșeviene din spațiul normat al funcțiilor lipschitziene, Rev. Anal. Num. Teor. Aprox., 2, 1, 81-87, (1973). [5]
- , O proprietate de monotonie a operatorului de cea mai bună aproximare în spațiul funcțiilor lipschitziene, Rev. Anal. Num. Teor. Aprox., 3, 2, 153-160,
- [6] Nachbin, L., A theorem of the Hahn-Banach type for linear transformation, Trans. Amer. Math. Soc., 68, 28-46, (1950).
- [7] Pantelidis, G., Approximationstheorie für metrische lineare Räume, Math. Ann., 184, 30-48, (1969).
- [8] Phelps, R. R., Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc., 25, 238-255, (1960).
- [9] Singer, I., Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale, Ed. Acad. R.S.R., București, 1967.

Received 16. II. 1977.

Universitatea "Babes - Bolyai" Cluj-Napoca Institutul de matematică