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Let M be a non-empty convex subset of the Fuclidean #-dimensional
linear space R", and let R? be the Fuclidean p-dimensional linear space
endowed with the usual (coordinatewise) ordering, Tt is well known (see
for example BrRECKNER w.w. [1, pp. 158—159]) that any convex
mapping from M into R’ is coutinuous on the interior of M. Therefore
it is natural to ask whether this result remaius true if the space R? is re-
placed by an ordered topological linear space Y. An affirmative answer
to this question has been given by rorEs PINTO A. J. B. [3, p. 260,
Corollary 3.1.2] in the case when Y is assumed to be ordered by a closed
normal gemerating cone. In the present note we shall show that a more
general result holds : any couvex mapping f: M — Y is continuous on the
interior of M even if the range space Y has only the boundedness property.

1. Fundamental definitions

In order to fix the terminology we recall in this section some basic
definitions from the theory of ordered topological linear spaces. For detail-
ed information ou ordered topological lincar spaces we refer the reader to
JAMESON 6. [3] and to wonc v.c. and x¢ k-1 [G].

By an ordered lincar space ¥ we mean a real linear space Y on which
there is defined a binary relation < such that for all x, v, 2€ Y the follow-
ing conditions are satisfied :

(i) » < «;

(ii) ¥ <y and ¥y < 2z imply x < z;

(iii) » <y implies x +2 <y 4 7;

(iv) ¥ < v implies ax < ay for all real numbers « > 0,
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The conditions (i) and (ii) express that < is an ordering, while (iii) and
(iv) express the compatibility of the ordering with the linear structure of V.

The positive wedge of an ordered linear space Y is the set Y+ of all
elements ¥ € Y such that ¢ < x, where o denotes the zero-element of
Y. Tt is easily seen that Y+ is a wedge?, i.e. a non-empty convex set closed
under multiplication by non-negative real numbers.

Conversely, if Z is a wedge in a real linear space Y, the binary relation
< defined by

(1.1) x<yify-—xe2Z

verifies conditions (i) — (iv) for all %, y, z € Y, and in consequence makes
Y into an ordered linear space whose positive wedge is exactly Z. The
relation < defined by (1.1) is called the ordering induced by Z.

If Y is an ordered linear space and x and y are elements of Y, the set

(4, 9] ={r €Y:x <z and z <y}

is called the order-interval between x and y. Clearly, [, y] is nom-empty
if and only if x < y.

Let M be a subset of an ordered linear space. M is called order-bounded
if it is contained in some order-interval. M is said to be full (or order-convex)
if [x, y] € M for all x, y = M.

An ordeved topological linear space is defined to be an ordered linear
space which is also a real topological linear space. It should be noted that
no relation is postulated between topology and ordering except that ari-
sing indirectly through their mutual relationship with the linear structure
of the space.

An ordered topological linear space is said to be locally full (or locally
order-convex) if it admits a neighbourhood-base at o consisting of full sets.
A wedge Z in a real topological linear space Y is said to be normal if the
ordering induced by Z makes Y into a locally full ordered topological
linear space.

We shall say that an ordered topological linear space Y has the bounded-
ness property if every order-bounded subset M of Y is bounded, i.e. for every
neighbourhood U of o there exists a real number @ > 0 such that M <aU.
Obviously, an ordered topological linear space has the boundedness pro-
perty if and only if every order-interval is bounded. In particular, every
locally full ordered topological linear space has the boundedness property.
The converse of this assertion is not true as the following simple example
shows.

E xample Consider the real linear space R? equipped with the usual
(coordinatewise) ordering and with the topology induced by the semi-norm
II-]]: R — R, defined by

l]l = |x* — #?| for all ¥ = (41, %) € R2,

* Some writers use the term cone instead of wedge.

-
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The ordered topological linear space obtained in this way has the bounded-
ness property, but it is not locally full. Indeed, if x = (4, %%) and y =
= (', %) are arbitrary elements of the space such that x < y, we have

ol < Nl — %) + 2l < 22 — 5 4 22 — % 4 ||x]| <
Sy Y- w2 x|

for all 2 = (7, 2*) = [, y]. Hence the order-interval [x, y] is bounded.
Therefore our space has the boundedness property. — Consider now the
sequences %, = (#, 0), ¥, = (n, n). They have the properties o < %, <y,
and lim y, = o. Since (#,) does not converge to o, a characteristic property
of the locally full ordered topological linear spaces (see wone v.-c. and
NG K.-F. [6, p. 48, Theorem 5.1]) is not satisfied. Thus the space is not
locally full.

2. The continuity theorem

Let M be a non-empty convex subset of a real or complex linear space,
and let ¥ be an ordered linear space. A mapping /: M — Y is said to be
comvex if

flax + (1 —a)y) < af(x) + (1 — a)f(y)

for every real number a € 10, 1[ and every %, v = M. It is an elementary
exercise to verify that f: M — Y is convex if and only if

75\ "
f‘{?t{ ‘l.’xf) = ?—,;1 a,f (%)
for all real numbers a,,
ments %, ..., %, € M. ‘

For convex mappings defined on convex subsets of Hausdorff topo-
logical linear spaces of finite dimensions whose values lie in an ordered,
topological linear space the following theorem holds :

con @, 20 with ) 4 ... + ¢, =1 and all ele-

THEOREM 1. Let M be a non-empty comvex subset of a real or complex
Hausdorff topological linear space X of dimension n = 1, and let Y be an
ordered topological linear space having the boundedness property. Then any
convex mapping [ M —Y is continuous on the interior of M.

Proof. Let K be the real number field if X is a real linear space, respec-
tively the complex number field if X is a complex linear space. By a well-
known result (see for example wOTHE . [4, p. 154, (1)]) there exists
an isomorphism A between X and the topological linear space K* in its
natural (product) topology. On the set A(M), which obviously is convex,
we define the mapping g by

g(x) = f(A1(x)) for all x = A(M).

This mapping is convex. We prove that it is continuous on the interior of
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Let xy be an interior point of A (M), and let I/ be an arbitrary neigh-
bourhood of the origin of Y. Choose, on the one hand, a real number »,
in the open interval ]0, 1[ such that x, 4 W < 4 (M), where W denotes
the set of all points x = (¥, ..., #") € K" with the property

|21 + o A a8 < o,

and, on the other hand, a balanced neighbourhood I, +2 of the origin of
Y such that

(21) va-l—?. + - + Vm»I-Z = I/,

~
m -+ 2 terms

where m = » if X is a real linear space and m = 2 if X is a complex
linear space. Since Y has the boundedness property and the set ext W of
all extremal points of W is finite, there exists a real number » = 10, !
such that the following two properties hold :

m1 E
e 7[0’ ,Z:I (g(xo + 2;) — 2g(%y) + gz, — 1)) | Vi
for all %, ..., %,,, € ext W ;
(2.3) Hg(xo) — g(xy — %)) € V,, ., for all x & ext V.
Put now U = x, 4- vIV. This sct is a neighbourhood of v, contained in
A(M). We claim that
(2.4) glx) —g(xe) €V lor all x e [,

Indeed, if v is an arbitrary eclement of U, it must be of the form % =
= Xo + 7y for a suitable clement v & WW. According to the convexity of g,
the equality

¥ (% b ) A (L= ),

implies
(2.5) g(%) < 7g(xy + ) + (1 — r)g(x,).
Analogously,

A1 Ll i Ltk

1 4 1 +r

implies
) 1
(2.6) g(%o) < . Vl ,rg(xo — ¥+ N a7 8(%).

From (2.5) and (2.6) we obtain
(2.7) rlglx) — glxs — ) < glx) ~ glwo) < #(g(x0 + 2) — glxa):
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By a well-known result (see for example norMES R. B. [2, D. 82, Lemma
b]) v is a convex combination of at most m - 1 points of ext W, i.e. there

exist m -+ 1 real numbers a,, ..., 4,.; 20 with a; + ... +a,,, =1
and m -+ 1 points x,, ..., x,,.; of ext W such that
Yo e Ay %,

Hence we have

-1 n»—{f\l

g(xy — ) = (2 a;(%, — x‘)) = Z{ 2;8(%y — %),
i= e
n mA1

=g
+1
glxg-tyv) =g ( £ a(%y + x‘)) = ;“1'5(7‘0 + x;).

=1

Together with (2.7) these inequalities imply
m41
i

72 a{g(®) — g%y — %)) < g(x) — glxy) <

i=1

m41
S7 2 alelx + %) — glx),

and so we obtain

3

-+

(2.8) 0 = g(x) —glxg) — 7

¢

a;(g(%0) — glxy — x;)) <

i

nA-1
=7 ;“z’(g'(xo + ;) — 28(%) + (%o — %))

Since a; < 1 and o < g(xy + ;) — 2¢(xy) + g(xy — x,) for all 1 =1, ...,
m + 1, we get from (2.8) g
m+1

glx) —g(x)—7r 2 ai(g(%e) — glxo — x,)) =

i==1
i m+1 ]
= "[0) 2; (g(xo + x,) — 2g(xy) + g7y — xa))J )
Taking (2.2) into account, it follows then that
41

g(x) — g(xo) — 7 ; 2,(8(%0) — g(xy — %)) € V10,

whence
h-+1

&%) — g(x%g) € Viyio +7 ;ai(g(xo) — &% — x;)).
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By (2.3) and (2.1) we have then
g(x) —g(xo) S I]m+2 + e + Vm+2 = v,

m 4 2 terms

So (2.4) is proved.

Since V was an arbitrary neighbourhood of the origin of Y, (2.4) shows
that g is continuous at x,. Hence g is continuous on the whole interior of
A(M). It follows then that f is continuous on the interior of M. [

Remark 1. In theorem 1 the hypothesis that X is a Hausdorff space
cannot be dropped as shown by the following example. Let X be the topo-
logical linear space considered in the example given in the first section.
The mapping f: X ~ R defined by f(x) == 2* for all ¥ = (&', #*) = X is
linear, hence convex, but not continuous.

Remark 2. In theorem 1 the hypothesis that Y has the boundedness
property cannot be dropped either. To show this, set X = Rand Y =
= (C2[1/2, 1], where C2[1/2, 1] denotes the ordered normed linear space of
all twice continuously differentiable functions y: [1/2, 1] -—» R with the
1107111

2
vl == Z—‘é max {jvO{)|: ¢t < [1/2, 1]}

and with the pointwise ordering. Y does not have the boundedness property,

since the order-interval between the origin and the function y: [1/2, 1]—R,

defined by »(f)=1 for all 1 =[1/2, 1], is not bounded. Put M = [—1, 1].
The mapping f: M — Y, defined by

Pariia for x &M\ {0}

e =1 T

for all ¢ = [1/2, 1], is convex, but it is not continuous at the point x, = 0.
The latter assertion follows from the inequality

dt? di?
valid for all x = [—1/2, 1/2]\ {0}.

COROLLARY 2. Let M be a non-empty convex subset of a veal or complex
Hausdorff topological linear space X of dimension n = 1, and let Y be a lo-
cally full ovdered topological linear space. Then any convex mapping f: MY
1S continuons on the intevior of M.

1)~ flelh > |2 1) - L | =1 - w2 3,

COROLLARY 3. Let X and Y be veal ov complex topological linear spaces
over the same field with X Hausdorff and finite-dimensional. Then any linear
mapping f: X =Y 4s continuous.
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Proof. Let Yy be the real restriction of Y. The ordering induced by

Eo}HmTEIL’IR makets. Y, 1%1111:10 an ordered topological linear space which is locally
ull. e assertion follows then by applying corollary 2 to th i

FESY. bplymng y 0 the mapping

Remark 3. In the proof of theorem 1 we made use of the fact that
any real or complex Hausdorff topological linear space of dimension %> 1
1s isomorphic to the topological linear space K* in its natural {(product)
topology. However, this result can be deduced by applying corollary 3.
Hence t_heorem 1, corollary 2, corollary 3 and the above-mentioned result
on the isomorphism of the f{inite-dimensional topological linear spaces are
equivalent, »
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