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1. Introduection.

Let 0 <v(x) & L be a weight function defined on —-w < ¥ < oo for
wich all moments

(1) o, (w) = S w(x)dy  (n=0,1,...)

—®

are finite. Then there exist a uniquely defined sequence {p,(w; x)} of poly-
nomials orthonormal with respect to the measure wdx so that the degree
of p,(w) is precisely n and the coefficient v, (1) of x* is positive. The zeros
of p,(w; x) are all real and simple (see e.g. [3]); we denote them in de-
creasing order by x,,(w) (¢ =1, 2, ...., n). In the present survay of results
and problems we are interested in the case when the support of wdx is not
compact. We are going to reveiw our investigations in the last five years
and complete it with some more recent observations. The only wellknown
cases are if the weight is

x e (v >0)

(2) an(x) - 0 (:\7 < O) (O: > —1)

* Tecture delivered at the Collogium on Constructive Theory of Functions, Cluj, Septem-
ber 1973. The original title of the lecture was ,,Recent results concerning othogonal polynomials
over the whole real line”.
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and where
©) wp(%) = |xffe=" (00 <x < o0; B> —1). 1 1

The orthogonal polynomials $,(v,; %) are equal, appart from constant (11) 0, (£) = 8 +n * (£ 0).
factors, to the classical Laguerre polynomials wich have a welldeveloped * 1 1 7=
theory (see e.g. c. szEgG [12]). 47 — €%+ 2 ®

The polynomials p,(w,; %) — the socalled Markov-Sonin polyno-
mials — can be reduced by the formulae As an extension of this result we define the class X of , near to Her-

. it hts by the foll <
) Polwn; %) = D(0pr; ) T(0p1) = [Znn(@) I m tle W?lg s by the following properties: w < X i w is even and
2 T ) ( )C A. Seting
x “w\x
and
() Powra(wg)! %) = xibn(vﬁ_—l-_l; %), %(Vp41) == [Fnonr1(wg) 1% (12) ..% %) 4 l)
2 o(x) =x “wlx'), V() =sx"wlx’ (x>0

For B =0, p,(w,; %) is a constant multiple of the Hermite orthogonal
polynomial H, (x). Having the transformations (4) and (5) in mind also |
theory of the polynom1als Pu(wp; %) can be considered as settled but not , 13 W x) = 2 (w - %) — .
much was known for cases if the weights are not known by explicit analy- | (13) Panl %) = 205 ), Banalw; %) = 25,V )
tic formulae.

we have

(see e.g. [3], problems I.13 and I.14).

_ . . By this transformation formulae we obtain
2. ,,Near to Laguerre” and ,uear to Hermite” polynomials

THEOREM 1. We have for every w = X
In our first investigation we treated the class A of ,,near to Laguerre”

Let further x,,(w) < £ < x,,(w) and & an integer for wich :
PROBLEM A (Unsolved). Let w = X ; when does the limit

weights. A weight w belongs to A iff w(x) = 0 for % <_ 0 and there exist (14) - L
two positive numbers a, » so that for every pair 0 < %, < x, we have Xip(w) = — X, (@ «/2% -+ O( ")
(6) emw(n,) S acvw(x,) and for every |E| < x,,(w)
and (15) Frp1a () S E S %, (0)
(7) Xy Tenw(x,) = Xy ferw(x,). implies
We proved in our paper [4] (see also [5]) that :
1 . (16) Co(@)0y(8) = Xp(w) — Xy p1,(0) = Colw)D, (),
®) %1,(w) £ 4n -+ 0{”3) (w = A) where
and L
9) ()t £ 5, () < oy(w)nt (@ < A) (17) ( . - %J ’
1 Xon = 2 : (Dn(a): 12%_ E,-I _I—n

xkn(w) 2 E-' g xk-l—l. n(w)J

(18) lim K (0) — Xppyq,u(w)

then we have v 00 @,,(&)

(10) 63(@)e,(E) = % (W) — %,1,(0) S cy(w)g,(E) (v = A), ) exist for every fixed £?
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Problem A is a seemingly accessible special case of a more general
unsolved problem posed at the end of our book [3]. The only case wich can
be settled directly is w = wp applying the known properties of the zeros
of Laguerre polynomials we obtain by (4) and (5) that the limnit (18) exists
and is equal to w for every fixed value of &.

3. Estimation of the greatest zero

Let
(19) wo(x) = e—0),

where Q(x) is an even differentiable function for wich #%Q'(x) (x > 0) is
an increasing function for some p << I

Defining ¢, as the unique positive solution of the equation

(20) 7.0 (9,) =
we proved in [7] that
(21) c’l(wQ)Qn = xln(wQ) = CS('LWQ)(]”.

Special cases of (21) where proved earlyer in [6] and by ¢.p. nfivar [11].

The estimate (21) can be combined with the following

Lemma 1 (see [8]). If w, and w, are even weights and A, B > 0,
(22) Aw, (%) £ wy{x) < Bwi(x) (—o0 < x < ),

then we have

A
(23) E xln(wl) é xln(w%) s len(wl)'

If w, is not necessarly even (23) holds onlv after replacing x,(1,) by
Xn(w2) = max {xln(w2) N xmn(wz)}'
The proof of (21) is based on

Lemma 2 (see [6]). We have for every even weight w

(24) Fn—l('w) 5 xllt(w) —S- 21-‘“_1('(?/),
where
(25) T,(w) = max Y=t

r<v  Yp(w)

In (24) neither the lower estimate can beimproved by a factor greater
then one nor is the upper estimate valid in general if [2] is replaced by a
smaller factor (see [G]). But we found recently that if vy, ,/y, variesin a
regular manner then the upper estimate in (24) is assymptotic :
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I,emma 3 (see [9]). Let w by even, and let the sequence

. oy (W) .

d () = 2= saps

o) = &

( ; ‘_ik'h(w) —1
(26) }{—EI:O dy(w)

then we have
— . Xm(w) . 2
(27) iljg (T)—20) '
Temma 3 can be combined with the following ;
pROBLEM B (conjectured in [9]). Let wg, (%) = |x|fe 1 (
<ow; B> —1,p>0), then

—o0 < ¥ <<

1 ]
. - (g -+ 1) 0
(28) lim 7 © d,(wg,) = = . 3 3 ;
i l‘lﬁjri-ﬁ 4—11
4
2 \ 2 J i

G and arbitrary p > —1L

; . . i for o = 2, 4 and
(28) was proved by us in [9] for o 2§ and 6) we wuter from

Whenever (28) is true (i.e. in particular for p=
T.emma 3 that

4 (e + 1) e
(29) Hm i Pxy,(wg) = 2[_‘—_&—'— K
g lf (L) F(.L . 1)
2 2

\

{ncreases substantially more rapidly
as setled by the following

x)}, let for every e>0

In the cases that —log w(x)
then a power of x the assymptotic of x,(w) W

crmorEM 2 (p. BRDOS [1]). Let wy{x)=exp {—R(

(30) R(y) = 2R(x) (v > (L + )l > alR; )
and let

(31) wp(f) =27 (5, >0

then we have

4. The distanee of consceutive zero

Let Z = [xnfl(w)J 9&71“(10)],

(33) %,(0) Z &
and
(34) A B) = %) — T ().

s
iiv

x/ﬁ'—l,ﬂ ('(E')
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THEOREM 3. Let wy(x) = exp {— Q(x)} where Q is an even differen-
tiable convex function for which 1 << 3 < ﬂ < 0 and let the sequence {q,}

. Q' (%)
be defined by (20) then
(35) A(wg; €) S Ciofwg) 2

n

(l&] = Cii(wg)q,)-

We hope to return to the proof of Theorem 3 elsewhere.

PROBLEM C. Is (35) valid with C ,(wy) replaced by C14(3, wy) for every
8 >0 and |&] £ (1 — 8)xy,(wy)?

The answer to Problem C is affirmative for the weights defined by (3);
no other case seems to be setled.

PROBLEM D. Do the conditions of Theovem 3 imply that

(36) /—\n(w() ; E’) = Clz(wQ) % ?

We know that the answer to Problem D is ,,yes”” for a rather extented
classe of weights, in particular for the weights w,(x) (defined in Prob-
lem B) whenever p > }. We conjecture that the answer to Problem D
is affirmative in general.

Special cases of Theorem 3 as well as of Problem D where treated by
G. p. NGvar [10].

5. The disivibation funetion of the zeros

For a 0 <n <1 we define v, (w; v) as the number of the zeros of
b, (w) wich are greater then xy,(w) — n[xy,(w) — x,,(w)]. The distribution
function of the zeros is defined as

o1
(37) lim — v, (w; ) = f(x).
n—co %
In our book [3] we called the attention to the unsolved problem to give
conditions for the existence of f(vn).

It is welknown that the zeros of the classical Jacobi polynomials have
the distribution function

(38) foln) = % — arcsin 7.

This can be interpreted that the numbers 3,, = arcsin ,," are equidistri-
buted in H. Wely’s sense. p. ERDOS [1] discovered that also the zeros of
p,(wg) have the distribution function (38). Here w, ia a weight wich satis-
fies the conditions of Theorem 2. p. ErRDOs [1] also remarked that the
weights w,, (see [28]) can not have the distribution function (38) for any
p > 0. A proof of this fact is published in our joint paper [2].
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Applying the Plancherel-Rotach assymptotic formula (seee.g. G. SZEGO
[12]) it is easy to sce that the Hermite orthogonal polynomials have the

distribution fy(n) defined by
(39) /1 (cos ®) = - (20 — sin 20).
2n

The Markov-Sonin polynomials p,(wg) have the same distribution
function (39).

PROBLEM E. Characterize the weights w dov wich the distribution fumnc-
tion of p,(w) is (39).

PROBLEM E. Determine the distribution fz;.n(c)tion 0]; téﬁe 700ts of Pu(Wop)
7 = —|xY at least for some O < p # 4.
Wkeyie%cwai(sxiloteefﬁaé ntl)tl }(;,ven the e{{istence of the distribution function
for the cases 0 < p # 2 is proved.

REFERENCES

jstributs K g ; dings of the

11 Erddés, P., On the distribution of roots ef evthogonal pq!yﬂr_mszfds. Proceeding h;

N Conference on Comstructive Theory of PFunctions., (Budapest 1968). Edited
by G. Alexits and S, B. Steckin. Alkadémiai Kiado, Budapest 1972. )

[2) Erdé 5, P, Preud, G, On orthogonal palynomials with regrlarly  distributed  zeros.
Proceedings of the London Mathen. Soc. (in print). ) o )

[3] Freud, G., Orthogonale Polynowe. Birkhiuser Verl. Bazel 1969, I'.uglis]_} translation by
T, T'6ldes: Orthogonal Polynomials, Pergamoi Press, New York-Torento-TLondon,
1971.

[4] Freud, G., {®peyal.), O6 ojuom riacce OPTOrOHA/LLIX Muorowlenos. MateMm. 3daMeTKH
9 (97), 5 — 522 . ‘

[5] Freud, G., On a class of orthogonal polynomials. Proceedings of\th'e International
Conference on Constructive Function Theory (\'Tarna 1970),<‘b.ofla, 1972.

(6] Freud, G., On the greotest zevo of on orthagonel polynomial, I. Acta el Math. (Szeged)
91—-97. . .

[7] Freud, G, On the greatest zevo on osthogonal polynomial, 11. Acta Sci. Math. (Szeged)
(in print). ' ‘

[8) Freud, G., On estimations of the greatest zevo of an ovihogonal polynomial. Acta Math.
Sci. Hung. (in print.). ‘ ai

[9) Preud, G., On the cocfficients in lhe vecursion formulae of ovthogonal polynomials. Studia
Sci. Math. Hung. (in print). 3

[10] Névai, G. P., Hexoropsie CBOICTBA MIIOTDUJIEHOB OPTOHOPMAJBHLIX € BECOM (14 4%k)
W MX NPHMeHeHus B Teopud npuOmkenns JLOKTanL Ax. Hayx CCP.

[11] Névai, G. P.,, MuorouleHsl, OPTOHOPMA/IBHBEIE HA BeIIleCTBEHHOM OCH C BeCOM. x%e—
Acta Math. Ac. Sci. Hung. 24, 335—342 (1973).

[12] Szegd, G., Orthogonal polynomials., Amer. Math. Soc, Coll. Publ, vol. XXIII, 2,
revised edition, 1959.

o
,

e_,,zk

x1®

Received 1. XII. 1973,



