MATHEMATICA-REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 6, Nº 2, 1977, pp. 139-143

LINEAR POSITIVE OPERATORS ON THE SPACE AC,

LUCIANA LUPAŞ
(Sibiu)

The aim of this paper is to investigate some convergence properties for sequences of linear operators L_n , $n=1,2,\ldots$, which preserve a certain cone $K_m=K_m[a,b]$, that is $L_n(K_m)\subseteq K_m$. In the following we shall consider that $K_m[a,b]$ is the cone of all functions from C[a,b] which are convex of the order m on [a,b], $m=0,1,\ldots$

Definition 1. A function $f:[a, b] \to R$ is called absolutely continuous of m^{th} order, if for every partition

$$a \leq x_0^0 < x_1^0 < \ldots < x_{m+1}^0 \leq x_0^1 < x_1^1 < \ldots < x_{m+1}^1 \leq \ldots$$

$$\ldots \leq x_0^{\mathsf{v}} < x_1^{\mathsf{v}} < \ldots < x_{m+1}^{\mathsf{v}} \leq b$$

with

$$\sum_{k=0}^{\nu} \left(x_{m+1}^{k} - x_{0}^{k} \right) < \delta(\varepsilon)$$

one has

$$\sum_{k=0}^{\nu} | [x_0^k, x_1^k, \dots, x_{m+1}^k; f] | (x_{m+1}^k - x_0^k) < \varepsilon$$

The space of all functions $f:[a, b] \to R$ which are absolutely continuous of m^{th} order is denoted by $AC_m = AC_m$ [a, b].

In [1] it is shown that a function $f:[a, b] \to R$ belongs to the space $AC_m[a, b]$ if and only if f has on [a, b] a derivative of m^{th} order which is absolutely continuous on this interval. In [2] it is proved that $AC_m[a, b]$ is a linear subspace of the space $BV_m[a, b]$ of all functions with bounded variation of the order m.

140

 $^{\circ}$

3

On the space $AC_m[a, b]$ let us define the functional $\|\cdot\|_m$ by

(1)
$$||f||_m = |f(a)| + |f'(a)| + \ldots + |f^{(m)}(a)| + V_m(a, b; f),$$

where $V_m(a, b; f)$ is the m^{th} total variation of the function f.

It may be proved (see [1] and [4]) that $\|\cdot\|_m$ is a norm on the space $BV_m[a, b]$. Moreover, the linear normed space $BV_m[a, b]$ becomes a Banach space.

Definition 2. An operator $L:AC_{m}[a, b] \rightarrow AC_{m}[a, b]$ is called m-positive iff $L(\overline{K}_w) \subseteq \overline{K}_m$, where $\overline{K}_m = AC_m[a, b] \cap K_m[a, b]$.

THEOREM 1. An operator $L:AC_m[a, b] \to AC_m[a, b]$ is m-positive iff for every $f \in AC_m[a, b]$ with $f^{(m+1)}(x) \ge 0$ a.e. $x \in [a, b]$ it follows that $(Lf)^{(m+1)}(x) \ge 0$ almost everywhere on [a, b].

Proof. Let us consider that L is a m-positive operator. It is known that a function $f \in \overline{K}_m$ if and only if the derivative $f^{(m+1)}$ exists almost everywhere on [a, b], and $f^{(m+1)} \ge 0$. Taking into account that $Lf \in \overline{K}_m$, it follows $(Lf)^{(m+1)} \ge 0$ almost everywhere on [a, b].

The converse statement may be proved in a similar way.

The main result of this paper is the following:

THEOREM 2. Let $L_n: AC_m[a, b] \rightarrow AC_m[a, b]$, n = 1, 2, ..., be asequence of linear m-positive operators which verify:

a) there exists a positive number M such that for n = 1, 2, ...

$$||L_n||_m \leq M;$$

b) for every $f \in AC_m[a, b]$

(2)
$$\lim_{n\to\infty} |(L_n f)^{(k)}(a) - f^{(k)}(a)| = 0, \quad k = 0, 1 \ 2, \ldots, n_0.$$

If
$$e_k(t) = t^k$$
, $k = 0, 1, ..., t \in [a, b]$, and

$$\lim_{n \to \infty} \|L_n e_k - e_k\|_m = 0$$

for k = 0, 1, ..., m + 3, then for every $f \in AC_m[a, b]$

$$\lim_{n \to \infty} ||L_n f - f||_m = 0.$$

Proof. From (1) and (2) it follows that is sufficient to prove

(5)
$$\lim_{n \to \infty} V_m(a, b; (L_n f - f) = 0.$$

If $g \in AC_m[a, b]$ then the total variation of m^{th} order is given by

$$V(a, b; g) = \int_{b}^{a} |g^{(m+1)}(t)| dt$$

Therefore we must show that the equality

(6)
$$\lim_{n \to \infty} \|(L_n f)^{(m+1)} - f^{(m+1)}\|_{L^1[a,b]} = 0$$

is valid. Our hypothesis enables us to assert that

$$\lim_{n\to\infty} \|(L_n e_k)^{(m+1)} - e_k^{(m+1)}\|_{L^1[a,b]} = 0,$$

for $k=0, 1, \ldots, m+3$, as well as that the sequences $((L_n f)^{(m+1)})_{n=1,2,\ldots,n}$ and $((L_n e_k)^{(m+1)})_{n=1,2,...}, k=0,1,...,m+3$, are uniformly bounded. In conclusion, if we show that (6) is valid for every $f \in C^{(m+1)}[a, b]$ than, by means of the Banach-Steinhaus theorem, our proof will be complete.

Let $f \in C^{(m+1)}[a, b]$; i.e. for any $\varepsilon > 0$ there is a positive number $\delta = \delta(\varepsilon)$ so that for every $x, t \in [a, b], |x - t| < \delta$, one has

$$|f^{(m+1)}(x) - f^{(m+1)}(t)| < \varepsilon.$$

If
$$g(t, x) = (t - x)^{m+3}$$
, $x, t \in [a, b]$, then

(7)
$$g_t^{(m+1)}(x,t) = \frac{\partial g^{m+1}(x,t)}{\partial t^{m+1}} = C(t-x)^2$$

with C > 0. From (7) one concludes that the inequality

$$|f^{(m+3)}(x) - f^{(m+1)}(t)| < \varepsilon + C(t-x)^2$$

is verified for any x, t from [a, b] with $|x - t| < \delta$.

If we put $\varphi = \frac{1}{(m+1)!} e_{m+1}$, the above inequality may be written as

$$-\varepsilon\varphi^{(m+1)}(t) - Cg^{(m+1)}(x,t) < f^{(m+1)}(x)\varphi^{(m+1)}(t) - f^{(m+1)}(t) < \varepsilon\varphi^{(m+1)}(t) + Cg^{(m+1)}(x,t),$$

which implies

$$-\varepsilon(L_n\varphi)^{(m+1)} - C(L_ng)^{(m+1)} < f^{(m+1)}(x)(L_n\varphi)^{(m+1)} - (L_nf)^{(m+1)} < \varepsilon(L_n\varphi)^{(m+1)} + C(L_ng)^{(m+1)},$$

$$n = 1, 2, \dots \text{ Therefore}$$

$$|f^{(m+1)}(x)(L_n\varphi)^{(m+1)}-(L_nf)^{(m+1)}|<\varepsilon (L_n\varphi)^{(m+1)}+C(L_ng)^{(m+1)},$$

for
$$n = 1, 2, ...; t, x \in [a, b]$$
 and $|t - x| < \delta$.

Now, for x = t one obtains

(8)
$$|(L_n f)^{(m+1)}(x) - f^{(m+1)}(x)| \leq$$

$$|(L_n f)^{(m+1)}(x) - f^{(m+1)}(x)(L_n \varphi)^{(m+1)}(x)| +$$

3 - L'analyse numérique et la théorie de l'approximation - Tome 6, No. 2/1977

 $+ |f^{(m+1)}(x)(L_n\varphi)^{(m+1)}(x) - f^{(m+1)}(x)\varphi^{(m+1)}(x)| <$

 $< \varepsilon(L_n \varphi)^{(m+1)}(x) + C(L_n g)^{(m+1)}(x) + \sup_{x \in [n,b]} |f^{(m+1)}(x)| \cdot |(L_n \varphi)^{(m+1)}(x) - \varphi^{(m+1)}(x)|.$

By using the hypothesis quoted in this theorem it follows that

- $\lim_{n \to \infty} |(L_n \varphi)^{(m+1)}(x) \varphi^{(m+1)}(x)| = 0 \text{ a.e. } x \in [a, b];$
- (II) $\lim_{n\to\infty} |(L_n \varphi)^{(m+1)}(x)| = 1$ a.e. $x \in [a, b]$;
- (III) $f^{(m+1)}$ attains its extreme values on [a, b].

On the other hand $L_n g \in C[a, b]$ and

$$(L_n g) = \sum_{k=0}^{m+1} {m+3 \choose k} (-1)^k (L_n e_{m+3-k}), \ t, \ x \in [a, b].$$

Choosing t = x we find

$$(L_n g)^{(m+1)}(x) = \sum_{k=0}^{m+3} {m+3 \choose k} (-1)^k e_k(x) (L_n e_{m+3-k})^{(m+1)}(x), \quad x \in [a, b],$$

which furnishes

$$\lim_{n\to\infty} (L_n g)^{(m+1)} = 0.$$

In conclusion, the right-term in (8) converges to zero and the theorem is proved.

In the particular case m=0, a similar result was obtained by s. stadler [5].

Examples of *m*-positive linear operators are: the S. N. Bernstein. operators, [3], and the operators I_n : $CP[a, b] \rightarrow CP[a, b]$, defined as

$$(I_n f)(x) = \int_a^b N_n(t) f(x+t) dt.$$

Here, CP[a, b] denotes the subspace of C[a, b] which includes the periodic functions whose periode is b-a. Likewise, $N_n \in C[a, b]$ and $N_n \ge 0$ on [a, b]. For these operators we observe that

$$[x_1, x_2, \ldots, x_{m+2}; I_n f] = \int_0^b N_n(t) [x_1, x_2, \ldots, x_{m+2}; f(x+t)] dt$$

holds for every distinct points $x_1, x_2, \ldots, x_{m+2}$ from [a, b], which enables us to assert that they are *m*-positive.

REFERENCES

- [1] Jerome, J. W. and Schumaker, L. L., Characterization of absolute continuity and essential boundedness for higher order derivatives. J. Math. Anal. Appl., **42**, 452 – 465 (1973).
- [2] Lupas, L., Functions of bounded variatopn of higher order. (to appear).
- [3] Popoviciu, T., Sur l'approximation des fonctions convexes d'ordre supérieur. Mathematica (Cluj), 10, 49-54 (1934).
- [4] Russell, A. M., A Banach space of functions of generalized variation. Bull. Austral. Math. Soc., 15, 431-438 (1976).
- [5] Stadler, S., Über 1-positive lineare Operatoren. ISNM, 25, 391-403 (1974).

Inst. Invätämint superior Facultatea de Mecanica Sibiu

Received 7. VI. 1977.