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1. Indroduetion

Let A = (a;) be a real m X n matrix (with rankd = #) and b a real

m-dimensional column vector. We design by a' = (ay, @, -, @y
ad = (dyj, gy ..., @yt TOW and column vectors of A respectively.
The optimization problem:
(1) min {f(¥)|dx < b},
where

" lfp
) 1) = (35 6 — ap)

=

is called best linear one-sided L-approximation.

Such problems occur frecvently in analysis as it was indicated by
r. Bojanic and rR. pr vorge [1]. One of such a problem is, for example,
discretizated one-sided continuous L ,-approximation of a given function
by generalized polynomials (see for instance [1, 2]).

As it is known, in the case p = 1 and p = oo, the problem (1) is equi-
valent to a linear programming problem. When 1 < p < o0, then (1) is
a convex programming problem, with linear inequality constraints. There
are several methods which can be used to solve such a problem. In 1973,
¢ A. WATSON [6] gave some numerical results concerning the efficiency of
the gradient projection method of . B. ROSEN [5] and the reduced gradient
method of R. worLFE [7] in solving problem (1). Both these methods in-
volve one-dimensional minimization problem in order to find the length of
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the step at each iteration. In order to avoid this, usually a linear or qua-
dratic interpolation is used.

In this paper we propose the application of the method of Chebyshev
centers of A. Ju. LEVIN [3]and . I. ZUHOVICKII — M. E. PRIMAK [8]to solve
(1). This is a special cutting plane method which involves at each iteration
to solve a linear programming problem. Beeing an interior points method,
no step-length calculation is needed.

Before proceeding, we note that the problem (1) may be simplified by
replacing the objective function f by its p-th power ; clearly, the same solution
x* solves both problems. Thus, we will deal with the problem :

3) min{F(x)|4x < b},
where
) F@) =30 (b — ax)t,  p> 1.

i=1

2. Method of Chebyshev centers

Consider a convex programming problem :
(5) min{f(x){dx < b}

where fis assumed to be convex and possessing a subgradient at each point
of the set

Qp={x = R"|dx < b},

with intQ, # ®. Let us denote by df(x) a subgradient of the function
f in the point =z, i.e.

f(x)(y — x) < f(y) — flx), Yy = R".

The algorithin of Chebyshev centers for the problem (3) comsists in
the following steps.

First a feasible solution of the problem (5) is selected, assume ! e
€ Q. Then Chebyshev center x? « Q, is determined of the system of
inequalities :

Ax < b
antloy < pr+l,
where
artle = of (&), b1 = Of (575,
le.

max {a"x? — b} = min max {a'x —b}=1p, <0
1€igmt+1 ye R Igigsmtl
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Assume that a1, x2, ..., ¥* were already calculated. Then x**1 is
Chebyshev center of the system

abx <b, =12, ...,mm+l, ..., m 4+ &

where
@t = 3f(aY), by = 8/ (W)
ie.

(6) max {a ¥*+1 — b} = min max {a'x — b} =p, <0.
1gigsmtk yeR" 1<i<mik

By introducing a new variable %,,,, the min-max problem (6) can
be reduced to the following equivalent linear program:

o, = min {%,,qla"% — b, < %yy, 1=1,2,..., M+ k}.
Number — p, is called Chebyshev radius of the system [8]
(7) ax <b,1=12, ..., m+k
In [8] the following convergence theorem for the Chebyshev centers
method 1s proved.

rHEOREM 1. If the Chebyshev vadius of the system (7) tends to zero,
i.c.

min max {@"x — b} =p, =0,
xeR" 1<i<m+k

then there is a subsequence (x*) of (x*) such that
flati-) 2 f(x5), i=1,2,...,
and each limit point of (2% is an optimal solution to the problemn (5).

ruROREM 2. The algorithim of Chebyshev centers applied to the prob-
lem (3) is always convergent to the optimal solution of (3).

In the proof of this theorem we will use:

ILemma. For each x° € Q, = {x € R"|Adx < b}, the set
@) M = {x = QF(x) s F(x)},

wheve

"

F(x) =Y, (b, — atx)b, p>1

1=l

is bounded.
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Proof. Assume that M is not bounded. Then since M is convex, it has
at least one recessive direction, i.e. there are v < Qpand d € R", 4 # 0,
such that y 4+ xd « M, y¥a 2 0.

Because y - M = Q,, it follows:
b —ay —n'd20,i=12 ..., m, ¢ r =0,

te. @d <0, i=1,2, ..., m, and clearly there is 7, € {Iy 2]l ha m}
such that @™ d < 0 (since rank 4 = 7).
Now if we consider x = v 4+ 2d, then we have
m "

Fx) = 22 (by — @)t = 33 (b, — by — habd)t =

i=1 1=

M i »
N S{CETT R

\
i=1\ M

for & > 0 sufficiently large, which contradicts the fact that x e A,
Proof of Theorem 2. From Iemma it follows that M is a convex compact

set for each p > 1. To prove the convergency of the method of Chebyshev
centers it is sufficient to show, according T'heorem 1, that the sequence of
Chebyshev centers tends to zero.

Assume the contrary, then there is o << 0 such that Pe = p W €& N

But from the definition of the subgradient dlf'(x) and ¢, we have

SF(x) (2 — &) = @il — w1) < 6, < p <0, Vj>4
or
—O0F(X) (% — ') 2 — >0, Vj> i
5o, since dI7(x) is obviously bounded on the compuct set M, we have

0< —p < |—0F(@)( — )] < || l(x )] |v ~ w7 | <
< KW — x|, V] > 1.

Therefore for each subsequence (1)
7 — o1l 2 =2 >0, p > g

which is a contradiction, because x* € M , kB €N, and M is a compact
set.

This means that o, — 0, & — oo, and from Theorem 1, it follows that
the method of Chebyshev centers is convergent to the optimal solution
to (3).
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()8

Remark 1. Since in our case (1 < p < o) the function F is differen-
tiable at each point, we have

oF(x) = yF(x) = grad F(x)

Remark 2. As it was shown in [8] it is possible to ignore the redun-
dante restrictions during the procedure of the algorithm in the following
way. Consider a decreasing to zero sequence (8,) of positive numbers. Tt
for some 4, we have p, > —39,, then we define the subset :

Lo {2, o.o,mym 1, ..., i)
for which
min  max {@"x — b} =lp;,
re), iE[i\
)
min max {a"x — b} < p,, Vj & [,
reQuiS I\ (i)

G

At the next step of the algorithm we keep only restrictions ai ¥ — b, €

£ 0, for ¢ = I; to which we add a new restriction
o (ah)x < OF (xh)xh,

A new scaling of redundant restrictions will be done when we obtain
e L\ J{m A1, 0, m 1y} such that p;, > — 3§, and so on.

As it was shown in [8]§, = l/\/k, k = N is oue of the good sequen-
ces for our purpose.

Remark 3. Because at each iteration we add ounly one new restriction,
in order to keep the negativity of the objective function row in the simplex
tablean, it is indicated to use the dual simplex algorithm.

el

3. Statement of the algorithm

The results of the previous section are now incorporated into the follo-
wing algorithm for the best one-sided Ly-approximation, based on the
Chebyshev centers method.

Step 0. Compute a basic feasible solution #' of the svstem

(10) Ax < b

by the primal simplex algorithm. If (10) is inconsistent then terminate.
Otherwise put & ==1, I, ={1,2, ..., my, w, = 9, and go to Step 1.

Step 1. Calculate
amthe = OF(x*), byyy = OF(xF)xk.
Step 2. Find Chebyshev center x*+! of the system
atx < b, 0= I, {J {m+k}
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by solving linear programming problem
(11) pp = min {%, sla"x — %,y < b, 1€ I, {m+k}}
by dual simplex method.

Step 3. If o, < —uy, then Ly, == I, U {m+£k}, w1 =8, otherwise
put

Ly = {lasa*¥ — by = 0}, w4y = 840
Step 4. Put k: =k 4 1 and go to Step 1.

The procedure will be continued till |p,| < e, for a given £ > 0.

4. Example

To illustrate the algorithm we consider the following small example :
minimize
Flx) = (1 — 21 — )" + (2 + 2, — %5)* + 2% + 23 =
= 3%} + 34% + 2%, — 6x, + 5

subjet to
X 4 %, €1
—%; 4+ %, € 2
(12) — %, <0
— %, < 0.

Step 0. x* = (0,0) is a b.f.s. to (12).

I, ={1,2,3 4}, p, = 8§ = 1.
Step 1.
a* = VF(x') = (2, —86).

Step 2. To find Chebyshev center of the system

% 4 x, €1
—%, + %, < 2
— %, <0

— %, <0

%, —3x, €0

we solve the program

¥y — min
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subject to
%+ Xy — x; < 1
—X + % — % < 2
—%, — %3, <0
— % — 2, <0
% — 3x, — x, < 0.

Starting from the simplex tableau:

—X%; — %y —%; 1
By =2 1 1 —1 1
Yy =] —1 I —1] 2
vy =|—1 0 -1 0
Ya=| 0 —1 —1| 0
Vg = 1 -3 —1 0
e=| 0 0 —11] 0

after five Gauss-Jordan (G—J) steps we get the tableau:

—V1 et B 1

yo=|—1/3 23 —4/3| 5/3
%e=| 13 —2/3 13| 13
By =| —1/3 —1/3 —1/3|—1/3
(13) =] 13 13 —2/3| 1/3
yve=| 13 —83 43| 1/3
o=|—1/3 —1/3 —1/3|—1/3

ie. 2= (1/3, 1/3), p, = —1/3.
Step 3. py > py = —1, 50 p, = 1/\/2
I, ={1, 3, 4}.

Step 1.
ab = VF(x?) = (4, —4).
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Step 2. We have to find Chebyshev center % of the system :

¥+ &, <

N

[
3
N

1
0
0
0

=
N
I

<
(=)

N

But from (13) it follows

Yy -+ — <0,

LS 1 Ty 1
Fp = ¥y — Xy = — vy — ;;\4 1Y .

3

50 we will solve by dual simplex algorithm the problem ;

—V1 —Va —Vs 1
X, = /3 —2/3 1/3 1/3
Xy =|—=1/3 —1/3 —~1/3|—1/3
2= 1/3 /3 —2/3 1/3
Yo =|—1/3 —4/3 2/31—1/3
o= |—1/3 —1/3 —1/3]—1/3

Alter one G—7J step we get

—vy\"l ’__\'G ___\’3 1L
Bl iy 1l e 1/2
%y =|—1/4 —1/4  —1/2]|—1/4
o= 018 Cya 2ap2| 14
Yo=| 1/4 —3/4 —1/2| 1/4
e=|—1/4 —1/4 —1/2|—1/4
SO ,’\53 - (1/41 1//2)1 Pa = _1/‘/4.
Step. 3. oy > —pp = =8, = —1/y/2, 50y, = 1/y/3, and I,={1, 3, 6}.

Another approximate solution will be otained as Chebyshev center
of the system

X %, <1
— % < 0
% — %, £0
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to which we add
OF (x%)(x — x%) = 28%, — 24x, < —5,

Chebyshev center of this system is &? = (19777, 39/77) ~ (0,245 0,5).
The exact solution of the problem is x* = (0,1).

Efficiency of the method. The method of Chebyshev centers described
in this paper was tested on some relatively small numerical examples,
As it was expected, in the cases of small examples Rosen’s gradient projec-
tion method is more efficient than this method. But in the cases of eno ugh
large scale problems the metod of Chebyshev centers seems to be more
efficient than Rosen’s algorithm.

REFERINCES

(11 Bojanic, R.; De Vore, R., On polynomials of best one-sided approximation. Bnscei-
nement Mathem., (2), 12, 139—164 (1966).

(2] De Vore R., One-sided approximation of functions. J. Approximation Theory, I, 11—25
(1968).

(3] Levin, A. Jy. Obodnom algoritme minimizaczii vypuklyh funkezii, Dokl, Akad, Nauk
S8S8R, 160, nr. 6, 1244—1247 (1965).

4] Marugciac, I, Preinterpolatory Lp-approvimation generalized  polynomials.  Stndia
Univ. Babes—Bolyai, Math., 80— 64 (1973).

[5] Rosen, J. B, The gradient Prajection method for nonlinear programming. 1. Linear
constraints. J. Soc. Indust. Appl. Math. 8, 181217 (1960).

6] Watson, G. B.. The calculation of best linear one-sided Lp-approximation. Math, Cowmn-
put, 27, 723, 607 —620 (1973),

(7] Wolfe, P., Methods of nonlitear programming. In  Recent Advances in wmathematical
programming., McGraw-Hill, New Vork, 1963, 67-86.

[Bl Znhoviekii, 8. I, Primak, M, E., O shodimosti metoda Cebyshevskik centrov i
metoda centvirovannylh secenii dlia vesenia zadali vypuklogo programmirovaiia.
D.A.N. SSSR, 222, 2, 273-276 (1975).

Received 10, V, 1977,

Universitatea Babes— Bolyai
Facultatea de Matematicd
Cluj-Napoca



