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1. Let {Q, K, P} be a probability space generated by a experiment

A4 and let 4,, 4,, ...., 4y be the possible autcomes of random experi-
ment A.
If the set {4, 4,, ...., Ay} formes a partition II for the sure event
Q, then [2], [4]
N
(1.1) H(M) = H(X) = —k 37 p,log,p,
i=1
where

‘\7
(1L2)  p;=P4)20,i=12 ...,N; 32 p;=1, k=log,e,

i=1
represents the amount of information furnished by the experiment A.

The quantity (1.1) is called the entropy of the partition II and it mea-

sures either the uncertainty of the experiment 4, if this experiment not yet
performed or the amount of information of the experiment A, if this ex-
periment has been performed. Also, we can speak as well that the quantity
(1.1) represents the amount of information contained by the random varia-
ble X generated by the experiment A.

2. Applieation of Taylor’s series to evaluation of H(X)
THEOREM 1. If X is a discret random variable then

N w s
21 H<X>=—3[(n—N)—n-log,n+ZE%§C£(—%)'}»

i=1s5=2 §

where # is a natural number.
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Proof. Consider

(2.2) pi=m 4+, i=1,2 ...., N,

1
n

where =, = (— s 1| then when p;, = (0, 1],
noon |
Because the function log, p; is infinite derivable in the ucighbourhood

of the poin’ti, it follows that the function
n

(2.3) flnm;) = log, (T'C‘- -+ l) = log,(1 4 wr;) — logn
n
admits the expansion in the power series
b 2 i E)
(2.4) fluw,) = — logm - (wm;) — (nz) —{—% —

where the power series

(nm)* Uy g {nmi)s 4 ...

0 S

(1 + nm,) = (n7,) —

¢

(2.5) log

. . 1
is convergent for |nm,| <1, respectively, for |=;| < "

Therefore, the function p;log,p; has the following expansion

s ('}'l n'i)s

-+ nw; 1 -
(2.6)  plogp, = — =log,m + ~jum; + 1 (— 1) R

where 2V = w(x — 1)(x —2) .... (¥ — v + 1).

Having in view that

N

(2.7) 2 np;=n—N
(28) (=1pm) = (L= mp))* = 2D Cil—npy),
and the development (2.6), we obtain for H(X) the following form
N @ s
1
(2.9) H(X) =— 2 (n — N) —n - logn + 2 Z; =D CH{— np,) -
n i=1 s= =
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Remark 1.2. Because the series (2.5) is convergent both for [nm;| < 1

1]

and for #r; = 1, it follows that the Taylor’s series which correspond to the

function log, ;, will be convergent if p, = (O, E]. This series will be
n

convergent for p, = (0, 1] only if » = 2,

Corollary 2.1. If n = 2, then H(X) has the form

0

2100 HX)=1-2e-N+2 3 L Ci(—%)‘}

t=1 s=2
where k = log,e.

Remark 2.2. According to the Remark 2.1 it seems that the formula
(2.9) is available only for # = 2, then when ?; = (0, 1].

If we have in view the condition (1.2) it follows that among the pro-

babilities p;, p,, ...., py exist al the most a probability p, so that p, >

= i NV > 2).

If the probability p, is sufficient near to one, then, evident, the others
probabilities p,, 4 =1, 2, ...., N, 1 # h, will be situated sufficient near
to zero. In other words, if p, — 1, then is possible to find a natural number

n so that all probabilities p, ¢ =1, 2, oo, N; 1 # Bk to be situate in
the interval (O, EJ
n

Corollary 22 If X is a discret random variable which satisfies
the conditions

N
Pi>0,1=12 ..., N; 3 p. =1
=1
and if
10 j)h = max {pl' ?2) I PN}I ph iy [1 — & 1]: E>0,

20 there is a natural number u so that p; = |0, 12 ,1=12 ..., N3

X
¢ £ L, then, for the measure H(X), we have the Jollowing form

H(X) = — i{(l — N) + np, log, p, + n(l — p,) [log,n — 1] +
(2.11)
N

+ 35 25 2 Cl—npyy )

1=1s5=2 §
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Corollary 23. If n =N, N —the number of the possible values of
discret random variable X, then the amount of information, H(X), has the

Jorm
N o

(2.12) H(X) = logs N — ¢ {Z: AL RD) c:(—Npe)‘}—

More, if X, is a random variable uniformly distributed, then H(X,) =
= log, N.

Corollary 2.4. For any random variable X, we have
(2.13) H(X) < log, N = H(X,),
where X, is uniformly distributed.

Proof. This corollary is a fundamental property of the measure H(X),
[1]. In ours case, the proof of the inequality (2.13) to came back to show

that D = 0, where

s

® i N = L (Nmy)s
> ¥ 2 C=Npy = 35 3 (-
Indeed, the sign of D depends by the sign of power series

N
E (——].)S (Nmg)s 1

s=2 s(2)

Mz

(2.14) =

Al

-
I
=

which, for [Nz | < 1, is convergent and consequently, his sum, S(N, ),
satisfies the condition
(Nmi)?

0 <S(N7T‘) <
1.2

This last inequality proves Corallary 2.4,
3. The Aproximation of I(X)
It is know that if the function f(x) has the derivates tell the order

m + 1 inclusively, in the vecinity of the point %, then it is expandable in
Taylor series [3] and we have

BA)  S6) = flag) + 0 ) R T ) (),
where
(32)  74x) = %—_f%'lif’"(“’ X+ 0(x —x)], 0<0<1,

is Iagrange’s form of the remainder.
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THEOREM 3.1. Let X be a discret vandom variable. Then th
H(X), of the amount of information of X, has the form . AL

(33) H(X) = H,(X) -+ Ry (nm),

wheve

B4 H) =l —N)— wtognt SN (L) e,

L ioie=2 Ts@
. 3 N
(8.5) R, (nm)=(—=1)" 23" (nm,)"+1 [_1_ 1 1+ nm]
% §=1 m m+ 1 1+6mv:,-'

0<0<, and nr; = np; — 1.

Proof. As an application of the formula (3.1), let i
power series the function p,log, ,. Al et

We have
1 I m; AL
(3.6)  pylog, py=—~T"log, n + = {mr + bml bl
—1)" (”T‘o)
+ (—1) o (7 }
where
(8.7) Tulnm,) = (— 1)”’"1(%7:'-)"'+1[l no__ Loy Jdo nw] )
' 1 m41 14+ Onmy

The expansion (3.6) with the remainder (3.7), gi j
(3.3) of the measure H(X). P il i

Corollary 3.1. Because nw; = np, — 1, it
swre EH(XY ks aicd Bhe form s =np, — 1, it follows that the mea-

(3.8) %{ (n — — n log, n +
N " 1 N
where
PR,
(B.9) R,(mp; —1) = —=Y, 2 Lol ll” 1 np;
% =1 #=0 m  m+1 14 6mp; —1)]°
0<O<l1

Remark 3.1. If X is a random variable uniforml istri
i : i vy distributed, then
H(X), given in the relation (3.8), to came return to H(X) = log; N.



160 tON MIHOC &

Corollary 3.2. The relation (3.3) give us the possibility to approxi-
mate the measure H(X) in the following form

! 1“\ nmwp)s
(3.10) H(X)~H,(X)=— i {(n—k)—n log, 4 D 3 (— 1) Lz (3 } :
1=1 s=2 N

n

The ervor in this case is just the value of the remainder (3.5).

Remark 3.2. The remainder R, (uw;), given in the relation (3.5),
can be write in the following form

N
(3.11) R.,,,wm)=(—1)"52<nn.-)'"“[i — g0, )|,
”n i=1 m m 4+ 1
where the function
(3.12) g0, m) = 0N (1=1,2, ..., N,
1 - Bnm

is defined for 6 = (0, 1) and #r, = np, — L.
Now, insted of the function g(0, =;), we introduce a new function
namely

1, 6=1, p, € (0,1]
- np; 0,4 0=0 =0
(3.13)  §(0, i) = T Tgpp, — 1y T )| BT {n if 0=0,;=1
g(e» pi)’ 7.'f 0 = (O) l)
where nw; =mp, — 1, i =1,2, ..., N.
If 0 =1 then for any p; = (0,1], respectively, for any =; €

3 "

e [— - l], we have g(1, p,) = 1. Making this change the remainder
R, (nw;) can be written as

N Mm+1
(3.14) R, (nm;) = (——1)""3 (nm)"+r

n i=1m(m + 1)

Now, replacing in the relation (3.3), the remainder R, (nm;) through
the new form (3.14), we obtain the following approximation for H(X).

(3.15) H(X) % HppnlX) = — = ‘(n — N) — nlog,n +
n
_ﬁ’\ m+1 1 [ \
+ (2) E CS( np‘)t}
i=1 s=2 § =2
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