L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 6, Nº 2, 1977, pp. 163-170

NOMOGRAMS WITH MINIMAL GLOBAL ERROR

(I - a collapsation premius the nonegona in the greather of a dream-

by

B. ORBÁN and F. RADÓ

(Cluj-Napoca)

1. Let the equation

(1)
$$z_3 = f(z_1, z_2)$$

be represented by a nomogram N with three curvilinear scales S_1 , S_2 , S_3 , having the following equations in orthogonal coordinates:

$$\begin{cases} x = x_i(s_i) \\ y = y_i(s_i) \end{cases} ; \ s_i = s_i(z_i) ; \ s_i'(z_i) \ge 0 ; \ z_i' \le z_i \le z_i'' ; \ i = 1, 2, 3,$$

where s_i is the arc length of the respective scale curve.

The error of the nomogram N in the point $P(z_i^0)$ of the scale S_i is defined by

$$E(P) = E(z_i^0) = \frac{h}{\frac{ds_i}{dz_i}(z_i^0)},$$

wher h is a constant (called the geometric error). Under the point-wise error of the entire nomogram N we understand the value $E_p = \max_i \max_{z_i' \leqslant z_i' \leqslant z_i'} E(z_i)$.

A point P such that $E(P) = E_P$ is called a point of maximal error.

The value of z_3 , found by use of the nomogram to solve equation (1), has an error, which depends on the error in the point z_3 of the scale $M_3(z_3)$, on errors in the points $M_1(z_1)$, $M_2(z_2)$ of the respective scales and on the equation (1). Thus an suitable measure for this error is the following value, associated to a the resolving line $\Delta = M_1 M_2$

(2)
$$E(\Delta) = E(z_1, z_2) = \frac{\partial z_3}{\partial z_1} \cdot \frac{h}{\frac{ds_1}{dz_1}} + \frac{\partial z_3}{\partial z_2} \cdot \frac{h}{\frac{ds_2}{dz_2}} + \frac{h}{\frac{ds_3}{dz_3}}$$

3

We define the global error of the nomogram by

$$E_g = \max_{z_i' \leqslant z_i \leqslant z_i'} E(z_1, z_2), \ i = 1, 2.$$

A line Δ such that $E(\Delta) = E_{\sigma}$ is called a line of maximal error.

Applying to the plane of the nomogram an admissible transformation (i.e. a collineation preserving the nomogram in the interior of a given domain, e.g. circular disc or rectangle), generally the error of the nomogram can be diminished; if not, the nomogram is said to be optimal.

In the papers [1], [2], [3], [4], [5], [6], [7], [8], [9] there where given criteria for a nomogram to be optimal with respect to the pointwise error and certain families of admissible transformations. In all these criteria a crucial rôle is played by the number and position of the points of maximal error.

In the present paper we shall give conditions for a nomogram $N_{\rm o}$. with two scales on a circle C and one scale on a line D, to be optimal with respect to the global error. Now the number and position of the lines of maximal error will be decisive.

2. Let the origin O of the orthogonal coordinates be the centre of the unit circle C and let the Ox axis be parallel to the line D; then the equations of the scales of N_0 are

$$S_i \begin{cases} x = \cos s_i \\ y = \sin s_i \end{cases}; \quad i = 1, 2 \qquad S_3 \begin{cases} x = s_3 \\ y = p \end{cases}$$

$$s_i = s_i(z_i),$$
 $z'_i \le z_i \le z''_i, i = 1, 2, 3.$

where p is the distance of the point O to the line D.

The points $M_i(s_i)$, i = 1, 2, 3 are collinear if and only if

(3)
$$s_3 = \frac{p(\cos s_1 - \cos s_2) + \sin (s_1 - s_2)}{\sin s_1 - \sin s_2}.$$

We take as admissible transformations the collinations of the plane which preserve the circle C. It is shown in [2] that such a collineation is, up to a rotation around O, a harmonic collineation with centre $O^*(\alpha, \beta)$ in the interior of the circle C and having as axis the polar of O^* with respect to C. We designate by Σ the family of these harmonic collineations, depending on two parameters α and β .

It is easily deduced that the image of the point M(x, y) under $\sigma(\alpha, \beta) \in$ $\in \Sigma$ is

$$x' = \frac{(\alpha^2 - \beta^2 + 1)x + 2\alpha\beta y - 2\alpha}{2\alpha x + 2\beta y - \alpha^2 - \beta^2 - 1}; \quad y' = \frac{2\alpha\beta x + (\beta^2 - \alpha^2 + 1)y - 2\beta}{2\alpha x + 2\beta y - \alpha^2 - \beta^2 - 1}.$$

The image nomogram $N_{\alpha,\beta}=\sigma(N_0)$ has as scales By to by them It, (a. 3) blents a mank manner of law that it all

$$S_{i}' \begin{cases} x' = \frac{(\alpha^{2} - \beta^{2} + 1) \cos s_{i} + 2\alpha\beta \sin s_{i} - 2\alpha}{2\alpha \cos s_{i} + 2\beta \sin s_{i} - \alpha^{2} - \beta^{2} - 1} \\ y' = \frac{2\alpha\beta \cos s_{i} + (\beta^{2} - \alpha^{2} + 1)\sin s_{i} - 2\beta}{2\alpha \cos s_{i} + 2\beta \sin s_{i} - \alpha^{2} - \beta^{2} - 1} \end{cases}, \quad i = 1, 2$$

$$S_{3}' \begin{cases} x' = \frac{(\alpha^{2} - \beta^{2} + 1)s_{3} + 2\alpha\beta\rho - 2\alpha}{2\alpha\cos s_{3} + 2\beta\sin s_{3} - \alpha^{2} - \beta^{2} - 1} \\ y' = \frac{2\alpha\beta s_{3} + (\beta^{2} - \alpha^{2} + 1)\rho - 2\beta}{2\alpha s_{3} + 2\beta\rho - \alpha^{2} - \beta^{2} - 1} \end{cases}$$

Since $\sigma(0,0)$ is a simmetry with regard to O, the nomogram $N_{0,0}$ may be identified with the given one, No. Direct calculations yield

(4)
$$\begin{cases} \frac{ds_{i}'}{ds_{i}} = \sqrt{\left(\frac{dx'}{ds_{i}}\right)^{2} + \left(\frac{dy'}{ds}\right)^{2}} = \frac{\alpha^{2} + \beta^{2} - 1}{2\alpha \cos s_{i} + 2\beta \sin s_{i} - 1 - \alpha^{2} - \beta^{2}}; \quad i = 1, 2 \\ \frac{ds_{3}'}{ds_{3}} = \sqrt{\left(\frac{dx'}{ds_{3}}\right)^{2} + \left(\frac{dy'}{ds_{3}}\right)^{2}} = \frac{\alpha^{2} + \beta^{2} - 1}{(2\alpha \cos s_{i} + 2\beta \sin s_{i} - 1 - \alpha^{2} - \beta^{2})^{2}} \\ \cdot \sqrt{(\beta^{2} - \alpha^{2} + 1 - 2\beta p)^{2} + 4\alpha^{2}(p - \beta)^{2}}. \end{cases}$$

The expression of the error corresponding to the nomogram $N_{\alpha,\beta}$ and the resolving line Δ going through $M_1(z_1)$, $M_2(z_2)$ becomes by (3)

(5)
$$E(\Delta, \alpha, \beta) = E(z_1, z_2, \alpha, \beta) = \frac{h}{\frac{ds_3}{dz_3}} \left(\frac{\partial s_3}{\partial s_1} \cdot \frac{1}{\frac{ds'_1}{ds_1}} + \frac{\partial s_3}{\partial s_2} \cdot \frac{1}{\frac{ds'_2}{ds_2}} + \frac{1}{\frac{ds'_3}{ds_3}} \right).$$

Let $\Delta_1, \ldots, \Delta_n$ be the lines of maximal error of the nomogram N_{α_0,β_0} . According to a result proved in paper [9], we have:

THEOREM 1. a) A necessary condition for $E_g(\alpha, \beta) = \max_{\alpha} E(z_1, \beta)$ z_2, α, β) to admit a relative minimum at (α_0, β_0) is the existence of a positive solution $(\forall j, t_j \ge 0, \text{ and } \exists k, t_k > 0)$ to the system of equations

(6)
$$\begin{cases} \sum_{j=1}^{n} \frac{\partial E}{\partial \alpha} (\Delta_{j}, \ \alpha_{0}, \ \beta_{0}) t_{j} = 0 \\ \sum_{j=1}^{n} \frac{\partial E}{\partial \beta} (\Delta_{j}, \ \alpha_{0}, \ \beta_{0}) t_{j} = 0. \end{cases}$$

4

b) If n=3, the rank of (6) is 2 and it has a strictly positive solution $(t_1, t_2, t_3 > 0)$, then $E_g(\alpha, \beta)$ admits a weak minimum at (α_0, β_0) , i.e. the restriction of $E_g(\alpha, \beta)$ to an arbitrary line through (α_0, β_0) admits a relative minimum at (α_0, β_0) .

c) If n > 3 and if we may select three lines Δ , with properties b), then again $E_{\epsilon}(\alpha, \beta)$ has a weak minimum at (α_0, β_0) .

Looking for conditions that the initial nomogram N_0 be (weakly) optimal we take $\alpha_0 = \beta_0 = 0$.

One deduces from (4)

(7)
$$\begin{cases} \frac{\partial}{\partial \alpha} \left(\frac{ds_i}{ds_i'} \right) \Big|_{\alpha = \beta = 0} = -2\cos s_i \\ \frac{\partial}{\partial \beta} \left(\frac{ds_i}{ds_i'} \right) \Big|_{\alpha = \beta = 0} = -2\sin s_i \end{cases} = 1, 2; \begin{cases} \frac{\partial}{\partial \alpha} \left(\frac{ds_3}{ds_3'} \right) \Big|_{\alpha = \beta = 0} = 4s_3 \\ \frac{\partial}{\partial \beta} \left(\frac{ds_3}{ds_3'} \right) \Big|_{\alpha = \beta = 0} = 2p \end{cases}$$

and from (3) we have

(8)
$$\frac{\partial s_3}{\partial s_1} = \frac{\sin s_2 - p}{2\cos^2 \frac{s_1 + s_2}{2}}; \qquad \frac{\partial s_3}{\partial s_2} = \frac{\sin s_1 - p}{2\cos^2 \frac{s_1 + s_2}{2}}.$$

By use of (7) and (8), we get from (5)

(9)
$$\begin{cases} \frac{\partial E}{\partial \alpha} \Big|_{\alpha=\beta=0} = -\frac{2h}{\frac{ds_3}{dz_3}} \frac{\sin\frac{s_1+s_2}{2} - p\left(\cos\frac{s_1-s_2}{2} - 2\sin\frac{s_1+s_2}{2}\right)}{\cos\frac{s_1+s_2}{2}} \\ \frac{\partial E}{\partial \beta} \Big|_{\alpha=\beta=0} = -\frac{2h}{\frac{ds_3}{dz_3}} \frac{\sin s_1 \sin s_2 - p\left(\sin\frac{s_1+s_2}{2}\cos\frac{s_1-s_2}{2} + \cos^2\frac{s_1+s_2}{2}\right)}{\cos^2\frac{s_1+s_2}{2}} \\ \frac{\partial E}{\partial \beta} \Big|_{\alpha=\beta=0} = -\frac{2h}{\frac{ds_3}{dz_3}} \frac{\sin s_1 \sin s_2 - p\left(\sin\frac{s_1+s_2}{2}\cos\frac{s_1+s_2}{2} + \cos^2\frac{s_1+s_2}{2}\right)}{\cos^2\frac{s_1+s_2}{2}} \end{cases}.$$

To simplify the expression (8) we introduce the non-homogeneous line coordinates (u, v) of the resolving line Δ going through the points $M_i(\cos s_i, \sin s_i)$, i = 1, 2. Since the equation of the resolving line Δ is

$$(\sin s_1 - \sin s_2)x + (\cos s_2 - \cos s_1)y + \sin (s_2 - s_1) = 0$$

we have

(10)
$$u = -\frac{\cos\frac{s_1 + s_2}{2}}{\cos\frac{s_1 - s_2}{2}}; \quad v = -\frac{\sin\frac{s_1 + s_2}{2}}{\cos\frac{s_1 - s_2}{2}}$$

After some calculations, we get

$$\frac{\partial E}{\partial \alpha}\Big|_{\alpha=\beta=0} = -\frac{2h}{\frac{ds_3}{dz_3}} u[(1+2p)v + 2+p];$$

$$\frac{\partial E}{\partial \beta}\Big|_{\alpha=\beta=0} = -\frac{2h}{\frac{ds_3}{dz_3}u^2} \left[-u^2(1+p)+pv+1\right].$$

The equations

$$\Gamma_1(u, v) = \Gamma_1(\Delta) = u[(1 + 2p)v + 2 + p] = 0;$$

$$\Gamma_2(u, v) = \Gamma_2(\Delta) = -u^2(p+1) + pv + 1 = 0$$

define in line coordinates two curves of second class, Γ_1 and Γ_2 . Γ_1 is reducible and represents the pair of points $P\left(0, \frac{1+2p}{2+p}\right)$ and the improper point of the Ox axis, i.e. Γ_1 consist of the lines through P and those parallel to Ox. The curve Γ_2 is the ellipse

$$\frac{x^2}{p+1} + \frac{(y-p/2)^2}{(p/2)^2} = 1$$

The following lemma is easily proved:

I, e m m a. 1 The line ux + vy + 1 = 0 intersects the ellipse Γ_2 in two real distinct points if and only if $\Gamma_2(u, v) < 0$.

In the subsequent discussion we need the following pencil of line conics

(11)
$$\Gamma_1(u, v) - \lambda \Gamma_2(u, v) = 0.$$

6

They are tangent to four fixed lines L_1 and L_2 , the tangents to the ellipse Γ_2 drawn from the point P, L_3 , the Ox axis, and L_4 , the other tangent to Γ_2 parallel with Ox. In order to obtain an interpretation for the parameter λ we determine the second tangent T_{λ} to the curve (11) passing through the origin O. Using homogeneous line coordinates equation (11) writes:

$$u[(1+2p)v + (2+p)w] + \lambda[(1+p)u^2 - pvw - w^2] = 0;$$

a line (u, v, w) passes through O if and only if w = 0; thus the tangents through O are the solutions of the system

$$u[(1+2p)v + \lambda(1+p)u] = 0, w = 0$$

and the line coordinates of T_{λ} are u = 1 + 2p, $v = -\lambda(1 + p)$, w = 0. Denoting be m_{λ} the slope of T_{λ} , we have

(12)
$$\lambda = \frac{1+2p}{1+p} \frac{1}{m_{\lambda}}.$$
 If Δ is any line different from L_i , $i=1,\ldots,4$, there exist a unique

curve (11) tangent to Δ ; we denote the corresponding value of the parameter λ by $\lambda(\Delta)$ and the tangent $T_{\lambda(\Delta)}$ by Δ' and call it the line associated to Δ . We can construct Δ as follows:

Lemma 2. Intersect L_1 with L_4 in A, Δ with L_2 in M, OP with the parallel through M to L_3 in \overline{B} , and AB with Δ in N. Then ON is the line associated to Δ .

This lemma is a a consequence of Brianchon's theorem applied to the six tangents Δ , L_2 , L_1 , L_4 , L_3 , in this order.

Note that $\lambda(\Delta) = \infty$ if and only if Δ is tangent to the ellipse Γ_2 and $\lambda(\Delta) = 0$ if and only if Δ passes through P (for a resolving line $\Delta \parallel Ox$ is not possible).

Lemma 3. Suppose that none of the lines Δ_1 , Δ_2 , Δ_3 , is tangent to the ellipse Γ_2 or passes through P. Then the number $\lambda(\Delta_2)$ is between $\lambda(\Delta_1)$ and $\lambda(\Delta_3)$ (i.e. $\lambda(\Delta_1) < \lambda(\Delta_2) < \lambda(\Delta_3)$ or $\lambda(\Delta_3) < \lambda(\Delta_2) < \lambda(\Delta_1)$) if and only if the pair of lines (Δ'_1, Δ'_3) separates the pair $(\Delta'_2, \bar{O}x)$. In this situation Δ_2 is said to be the central line of Δ_1 , Δ_2 , Δ_3 .

Indeed, it is sufficient to consider the following cases: $0 < \lambda(\Delta_1) <$ $<\lambda(\Delta_2)<\lambda(\Delta_3)$; $\lambda(\Delta_1)<0<\lambda(\Delta_2)<\lambda(\Delta_3)$; $\lambda(\Delta_1)<\lambda(\Delta_2)<0<\lambda(\Delta_3)$; $\lambda(\Delta_1)<\lambda(\Delta_2)<0<\lambda(\Delta_3)$; $\lambda(\Delta_1)<\lambda(\Delta_2)<0$. In each case lemma 3 easily follows from (12), wehre $\frac{1}{m_2}$, is a constant factor.

3. To apply theorem 1. we consider the following main case: there are exactly 3 lines of maximal error, say Δ_1 , Δ_2 , Δ_3 , $\Gamma_i(\Delta_i) \neq 0$, i = 1, 2; j=1,2,3, and the associated lines Δ_1' , Δ_2' , Δ_3' are distinct.

Then the system (6) becomes

(13)
$$\Gamma_{i}(\Delta_{1})t_{1} + \Gamma_{i}(\Delta_{2})t_{2} + \Gamma_{i}(\Delta_{3})t_{3} = 0; \quad i = 1, 2.$$

If Δ_2 is the central line among Δ_1 , Δ_2 , Δ_3 , and

If
$$\Delta_2$$
 is the central line among $\Delta_1,\ \Delta_2,\ \Delta_3,\ {\rm and}$
$$\lambda_i \ = \ \lambda(\Delta_i) = \frac{\Gamma_1(\Delta_i)}{\Gamma_2(\Delta_i)} \ ,$$

the system of equation (13) has a positive solution if and only if the numbers

(14)
$$\frac{\lambda_1 - \lambda_2}{\Gamma_2(\Delta_3)}, \qquad \frac{\lambda_2 - \lambda_3}{\Gamma_2(\Delta_1)}, \qquad \frac{\lambda_3 - \lambda_1}{\Gamma_2(\Delta_2)}$$

have same sign, that is to say when $\Gamma_2(\Delta_1)$, $\Gamma_2(\Delta_2)$, $\Gamma_2(\Delta_3)$ have equal sign. Using also lemma 1. we can state:

THEOREM 2. In the main case the following condition is necessary and sufficient for the nomogram N_0 to be weakly optimal:

Either exactly one of the three lines of maximal error is a secant to (15) $\{$ the ellipse Γ_2 and this the central one, or exactly two lines of maximal error are secant to Γ_2 and these are not central.

Note that lemmas 2 and 3 permit a graphical verification of condition (15). In case when the number n of the lines of maximal error is greater than 3 and if we can select 3 of them satisfying the conditions of theorem 2, then N_0 is weakly optimal.

When n < 3 we can state only necessary conditions: Let N_0 be optimal; if n=1, then Δ_1 coincides with L_1 or L_2 ; if n=2, then $\Delta_1'=\Delta_2'$ and exactly one of the lines Δ_1 , Δ_2 is a secant to the ellipse Γ_2 .

Suppose n = 3. Another case allowing to formulate necessary and sufficient conditions is this: $\Gamma_2(\Delta_3) = 0$ and $\Gamma_1(\Delta_3)$, $\Gamma_2(\Delta_1)$, $\Gamma_2(\Delta_2) \neq 0$. Then N_0 is weakly optimal if only if

$$\begin{cases} \Gamma_2(\Delta_1)\Gamma_2(\Delta_2) < 0 \\ \Gamma_2(\Delta_1)\Gamma_1(\Delta_3)(\lambda(\Delta_1) - \lambda(\Delta_2)) < 0 \end{cases}$$

Again it is easy to check the conditions graphically.

REFERENCES

- [1] Groze, S., Orbán, B., Sur une classe des transformations des nomogrammes de l'ordre trois, Mathematica, 7 (30), 2, p. 233-246. (1966).
- [2] Groze S., Orbán, B., La décomposition d'une projectivité sur une conique et son application à la meilleure transformation projective d'une échelle située sur un cercle, Revue Roumanie de Mathématiques pures et appliquées; XII, nr. 8, p. 1075-1073. (1967).
- [3] Groze, S., Orbán, B., Sur la 'transformation projective d'un nomogramme à deux échelle sur un cercle et le troisième sur une courbe quelle conque, Revue Roumaine de Mathématiques pures et appliquées XV, nr. 2, p. 239-248 (1970).

- [4] Groze, S., Orbán, B., Criterii pentru ca o nomogramă cu puncte aliniate să aibă eroarea minimă, Studia Univ. Babeș Bolyai Ser. Math. Mech. fasc. 1, p. 69 75 (1970).
- [5] Orbán, B., Groze, V., Coman, Gh., Despre transformarea proiectivă a nomogramei cu scări rectilinii, Studia Univ. Babeş—Bolyai, Ser. Math.—Phys. fasc. 1 (1967).
- [6] Orbán, B., Vasin, A., Despre transformarea proiectivă a unei nomograme cu două scări pe o parabolă și una rectilinie. Studia Univ. Babeș—Bolyai, Ser. Math.—Phys., fasc. 1, p. 26—32 (1967).
- [7] R a d 6, F., Cea mai bună transformare proiectivă a scărilor la nomograme cu puncte aliniate, Studii și cercetări de Matematică, Cluj 1-2, an VIII p. 161-168, (1957).
- [8] Rad 6 F., Uber die beste proiective Transformation von geradlinigen Leitern, Z.A.M.M. 45, p. 356-360, (1965).
- [9] Radó, F., Groze, V., Orbán, B., Propriétés extrémales dans une clase de fonctions et applications à la transformation des nomogrammes, Mathematica 6 (29), p. 307-326, (1964).

The date with the timeble a of the in the for marking error or store than 3 and if ye a selection is the continue of theorem

The state of the s

Destroy Service for the sense of anti-property of the sense of the sen

Recleved 29. XII, 1977.

Universitatea Babeș — Bolyai Facultatea de Matematică Cluj-Napoca