MATHEMATICA - REVUE D'ANALYSE NUMERIQUE ET DE THEOORIE DE L'APPROXIMATION

LANALYSE NUMÉRIQUE ET LA THÉORIE DE LAPPROXIMATION Tome 7, No 2, 1978, pp. 117-133

THE NUMERICAL SOLUTION OF THE SELF-ADJOINT SECOND ORDER ELLIPTIC PARTIAL DIFFERENTIAL EQUATION UNDER MIXED BOUNDARY CONDITIONS

by
G. AVDELAS and A. HAD JIDIMOS
(Ioannina, Greece)

Summary. In this paper we present a method for the numerical solution of a model problem of the two dimentional Self-Adjoint second order elliptic partial differential Equation under mixed boundary conditions.

1. Introduction

In a previous paper of ours [3] the first three boundary value problems for the two dimensional self-adjoint second order elliptic partial differential equation (S.A.E.) were studied under the assumption that certain conditions were fulfilled so that Extrapolated Alternating Direction Implicit (E.A.D.I.) methods could be used for the numerical solution of them.

The purpose of this paper is to show how to develop a theory analogous to that in [3] so that the numerical solution of the S.A.E. under mixed boundary conditions could be obtained. As we shall see in the analysis which follows, from the numerical point of view, the soluttion of the problem in question, presents no difficulties. This agrees wit what is already known (see e.g. GREENSPAN [4] pp. 57-58) and becomes clear by working out a numerical example.

2. Statement of the problem and notation used

To facilitate the subsequent analyisis the following notations are introduced and used throughout this paper

$$
\begin{array}{ll}
I \equiv\{1,2\} \text { with } i \in I & \partial R_{i}=\partial R_{i}^{0} \cup \\
J \equiv\{0,1\} \text { with } j \in J & \partial R=\partial R_{1} U \partial \\
R \equiv\left\{x \mid x \equiv\left(x_{1}, x_{2}\right) \text { and } 0<x_{i}<l_{i}\right\} & \bar{R}=R \bigcup \partial R \\
\partial R_{i}^{j} \equiv\left\{x \mid x \equiv\left(x_{1}, x_{2}\right) \text { and } x_{i}=j l_{i}\right\} &
\end{array}
$$

Having introduced the notations above we consider now the S.A.E. (1)

$$
L u=f(x), \quad x \in R
$$

where L is the elliptic operator defined by
(2)

$$
L \equiv \frac{\partial}{\partial x_{1}}\left(\alpha_{1}\left(x_{1}\right) \frac{\partial}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(\alpha_{2}\left(x_{2}\right) \frac{\partial}{\partial x_{2}}\right)-c_{1}\left(x_{1}\right)-c_{2}\left(x_{2}\right)
$$

with $\alpha_{i}\left(x_{i}\right)>0$ and $c_{i}\left(x_{i}\right) \geqq 0 \mid i \in I$. The solution u, which is required to satisfy the boundary conditions
(3)

$$
l u=v_{i}^{j}(x), \quad x \in \partial R_{i}^{j}, \quad i \in I \text { and } j \in J
$$

is assumed to be sufficiently smooth in \bar{R}. The operator l in (3) is defined as the identity operator on one or more sides ∂R_{j}^{i} of the rectangle R and as the operator $(-1)^{j+1} \frac{\partial}{\partial x_{i}}+\sigma_{i}^{j}\left(\sigma_{i}^{j} \geqq 0\right)$ on the remaining sides ∂R_{i}^{j} i.e.

$$
l \equiv\left\{\begin{array}{l}
\left\{\begin{array}{l}
\equiv \text { the identity operator on } \partial R_{D} \equiv \\
\equiv \partial R_{1}^{0} \cup \partial R_{2} \text { or } \partial R_{1}^{0} \cup \partial R_{2}^{1} \text { or } R_{1} \text { or } \partial R_{1}^{0} \\
\equiv l_{i}^{j} \equiv(-1)^{j+1} \frac{\partial}{\partial x_{i}}+\sigma_{i}^{j} \text { on } \partial R_{N} \equiv \partial R-\partial R_{D}
\end{array}\right.
\end{array}\right.
$$

Depending on the way the operator l is defined we can distinguish four different problems. These four problems, which are studied in the sequel, are presented below schematically by giving in bold faced lines the part of the boundary on which the operator l coincides with the identity operator.

We note that in the case where in at least one of the sides of the rectangle R, parallel to the x_{i}-axis, the boundary conditions are those of a third type boundary value problem the corresponding coefifcient $\alpha_{i}\left(x_{i}\right)$

$$
\begin{aligned}
& \text { Problem One }(P I) \\
& \left(\partial R_{D}=\partial R_{1}^{0} \cup \partial R_{2}\right)
\end{aligned}
$$

Problent Treo (PII)
$\left(\partial R_{D}=\partial R_{1}^{0} \cup \partial R_{2}^{1}\right)$

Problem Three (PIII)

$$
\left(\partial R_{D}=\partial R_{1}\right)
$$

Problem Four (PIV) $\left(\partial R_{D}=\partial R_{1}^{0}\right)$

in the elliptic operator L in (2) must be constant is order for the analysis given in this paper to apply (see also [3]).

For the numerical solution of problem (1)-(3) a uniform mesh of size $h_{i}=l_{i} / N_{i}$ in x_{i}-direction is imposed on \bar{R} where $N_{i}(\geqq 3)$ is an arbitrarily chosen integer and then the differential equation (1) together with its boundary conditions (3) is approximated by appropriate difference equations at all mesh points. In what follows we adopt the notation $u_{i_{1} i_{1}}$ to represent the approximate value to $u\left(i_{1} h_{1}, i_{2} h_{2}\right)$.

3. Discretisation of the differential problem

Let B be the operator acting on $u_{i_{1} i_{2}}$ and defined by one of the four expressions (4) below

$$
B_{i} \equiv\left\{\begin{array}{l}
\equiv \frac{1}{h_{i}^{2}} \delta_{x_{i}}\left(\alpha_{i}\left(x_{i}\right) \delta_{x_{i}}\right)-c_{i}\left(x_{i}\right) \\
\equiv \frac{1}{h_{i}^{2}} \delta_{x_{i}}\left(\alpha_{i}\left(x_{i}\right) \delta_{x_{i}}\right)-\frac{1}{h_{i}^{2}} \alpha_{i}\left(x_{i}+(1-1)^{j+1} \frac{h_{i}}{2}\right) E_{x_{i}}^{(-1-1) j+1}-c_{i}\left(x_{i}\right) \\
\equiv \frac{2 \alpha_{i}\left(x_{i}+\frac{h_{i}}{2}\right)}{h_{i}^{2}}\left(\Delta_{x_{i}}-h_{i} \sigma_{i}^{0}\right)-c_{i}\left(x_{i}\right) \\
\equiv-\frac{2 \alpha_{i}\left(x_{i}-\frac{h_{i}}{2}\right)}{h_{i}^{2}}\left(\nabla_{x_{i}}+h_{i} \sigma_{i}^{1}\right)-c_{i}\left(x_{i}\right) \tag{4~d}
\end{array}\right.
$$

In the expressions above $\delta_{x_{i}}, E_{x_{i}}, \Delta_{x_{i}}$ and $\nabla_{x_{i}}$ are the central difference, the shifting, the forward difference and the backward difference operators in x_{i}-direction respectively. The expression to be used for B_{i} in a specific case depends on the value of i, the position of the point $x \equiv\left(x_{1}, x_{2}\right) \equiv$ $\equiv\left(i_{1} h_{1}, i_{2} h_{2}\right)$ in \bar{R} and the problem being solved. In each case arising the appropriate expression for the operator B_{i} is used according to 'Iable I

TABLEI

Expressiou	Problem	i	Ranges or values for i_{1}	Ranges or values for i_{2}
4 a	PI	1	[2, $\left.\mathrm{N}_{1}-1\right]$	[1, $\left.\mathrm{N}_{2}-1\right]$
		2	$\left[1, N_{1}\right]$	$\left[2, \mathrm{~N}_{2}-2\right]$
	PII	1	$\left[2, N_{1}-1\right]$	[0, $\left.\mathrm{N}_{2}-1\right]$
		2	$\left[1, N_{1}\right]$	[1, $\left.\mathrm{N}_{2}-2\right]$
	PIII	1	[2, $\left.\mathrm{N}_{1}-2\right]$	$\left[0, \mathrm{~N}_{2}\right]$
		2	$\left[1, N_{1}-1\right]$	[1, $\left.\mathrm{N}_{2}-1\right]$
	PIV	1	[2, $\left.N_{1}-1\right]$	[0, N_{4}]
		2	$\left[1, N_{1}\right]$	$\left[1, \mathrm{~N}_{3}-1\right]$
4 b	PI	1	1	$\left[1, \mathrm{~N}_{2}-1\right]$
		2	$\left[1, N_{1}\right]$	1, $\mathrm{N}_{2}-1$
	PII	1	1	[0, $\left.\mathrm{N}_{2}-1\right]$
		2	$\left[1, N_{1}\right]$	$\mathrm{N}_{\mathrm{a}}-1$
	PIII	1	1, $\mathrm{N}_{1}-1$	$\left[0, N_{2}\right]$
	PIV	1	1	$\left[0, N_{2}\right]$
4 c	PII	2	$\left[1, N_{1}\right]$	0
	PIII	2	$\left[1, N_{1}-1\right]$	0
	PIV	2	$\left[1, N_{1}\right]$	0
4d	PI	1	N_{1}	$\left[1, N_{2}-1\right]$
	PII	1	N_{1}	$\left[0, \mathrm{~N}_{3}-1\right]$
	PIII	2	$\left[1, N_{1}-1\right]$	N_{a}
	PIV	1	N_{3}	$\left[0, N_{2}\right]$
		2	$\left[1, N_{1}\right]$	N_{2}

Using the appropriate forms of the operator B_{i} given by expressions (4) the differential problem (1) - (3) is replaced by the following discrete one
(5) $\quad\left(B_{1}+B_{2}\right) u_{i_{1} i_{2}}=\varphi_{i_{1} i_{2}}, \quad x \equiv\left(x_{1}, x_{2}\right) \equiv\left(i_{1} h_{1}, i_{2} h_{2}\right) \in \bar{R}-\partial R_{D}$
where the values for $\varphi_{i, i,}$ are easily obtained from the R.H.S. of equation (1) and the corresponding boundary conditions. It can be found out that equations (5) have a truncation error $0\left(h_{1}^{2}\right)+0\left(h_{2}^{2}\right)$ except in the case where the point x involved lies on ∂R_{N}. Then according to which side of the rectangle the point x lies on, the corresponding exponent in h_{i} is decreased by one.

If we define the integers K_{i} and $L_{i} \mid \dot{i} \in I$ according to Table II
TABLEII

Problem	K_{1}	K_{2}	L_{1}	L_{2}
P I	1	1	N_{1}	$N_{2}-1$
P II	1	0	N_{1}	$\frac{N_{2}-1}{}$$P$ III 1
P IV	1	0	$N_{1}-1$	N_{2}
	N_{1}	N_{2}		

and denote the expression $L_{i}-K_{i}+1$ by $M_{i} \mid i \in I$ we can readily see that the totality of equations (5) can be written in matrix from as follows

$$
\begin{equation*}
\left(A_{1}^{*}+A_{2}^{*}\right) u^{*}=\Phi^{*} \tag{6}
\end{equation*}
$$

In matrix equation (6) above A_{i}^{*} are known matrices of order $M_{1} M_{2}, u^{*}$ is an unknown $M_{1} M_{2}$-dimensional vector of the form

$$
u^{*}=\left(u_{K_{1} K_{2}}, u_{K_{1}+1, K_{2}}, \ldots, u_{L_{1} K_{2}}, u_{K_{1}, K_{2}+1}, u_{K_{1}+1, K_{2}+1}, \ldots, u_{L_{1} L_{2}}\right)^{T}
$$

and Φ^{*} a known $M_{1} M_{2}$-dimensional vector given by

$$
\Phi^{*}=-h_{1} h_{2}\left(\varphi_{K_{2} K_{2}}, \varphi_{K_{1}+1, K_{\mathbf{2}}}, \ldots, \varphi_{L_{1} K_{2}}, \varphi_{K_{1}, K_{2}+1}, \varphi_{K_{1}+1, K_{\mathbf{1}}+1}, \ldots, \varphi_{L_{1} L_{2}}\right)^{T} .
$$

The matrices A_{i}^{*} have the following product forms

$$
A_{i}^{*}=J_{2} \otimes H_{1}^{*} \text { and } A_{2}^{*}=H_{2}^{*} \otimes J_{1}
$$

with J_{i} being unit matrix of order M_{i}, H_{i}^{*} a matrix of order M_{i} being given below and the symbol \otimes denoting tensor product as is defined in

HALMOS [6]. The matrices H_{i}^{*} are given for the four different problems as follows
(7) $H_{1}^{*}=\frac{h_{2}}{h_{1}}\left[\begin{array}{ccc}\alpha_{1}^{1 / 2}+\alpha_{1}^{3 / 2}+c_{1}^{1} h_{1}^{2} & -\alpha_{1}^{3 / 2} & \\ -\alpha_{1}^{3 / 2} & \alpha_{1}^{3 / 2}+\alpha_{1}^{5 / 2}+c_{1}^{2} h_{1}^{2} & -\alpha_{1}^{5 / 2} \\ & \ddots & -\alpha_{1}^{M_{1}-1 / 2} \\ & \cdots & \\ & -2 \alpha_{1}^{M_{1}-1 / 2} & 2 \alpha_{1}^{M_{1}-1 / 2}\left(1+h_{1} \sigma_{1}^{1}\right)+c_{1}^{M_{1}} h_{1}^{2}\end{array}\right]$
for problems PI, PII and PIV,
(8) $H_{i}^{*}=\frac{h_{k}}{h_{i}}\left[\begin{array}{ccc}\alpha_{1}^{1 / 2}+\alpha_{i}^{3 / 2}+c_{i}^{1} h_{i}^{2} & -\alpha_{1}^{3 / 2} & \\ -\alpha_{i}^{3 / 2} & \alpha_{i}^{3 / 2}+\alpha_{i}^{5 / 2}+c_{i}^{2} h_{i}^{2} & -\alpha_{i}^{5 / 2} \\ & \cdot & -\alpha_{i}^{M_{i}-1 / 2} \\ & -\alpha_{i}^{M_{i}-1 / 2} & \alpha_{i}^{M_{i}-1 / 2}+\alpha_{i}^{M_{i}-1 / 2}+c_{i}^{M_{i} h_{i}^{2}}\end{array}\right]$
for $k \in I-\{i\}$ and problem P III for $i=1$ and problem P I for $i=2$,
(9) $\left.\mathrm{H}_{2}^{*}=\frac{h_{1}}{h_{2}}\left[\begin{array}{ccc}2 \alpha_{2}^{1 / 2}\left(1+h_{2} \sigma_{2}^{0}\right)+c_{2}^{0} h_{2}^{2} & -2 \alpha_{2}^{1 / 2} & \\ -\alpha_{2}^{1 / 2} & \alpha_{2}^{1 / 2}+\alpha_{2}^{3 / 2}+c_{2}^{1} h_{2}^{2} & -\alpha_{2}^{3 / 2} \\ \vdots & \cdot & -\alpha_{2}^{M_{2}-3 / 2} \\ & -\alpha_{2}^{M, 2 / 2} & \alpha_{2}^{M_{\mathrm{a}}-3 / 2}\end{array}\right] \alpha_{2}^{M_{2}-1 / 2}+c_{2}^{M_{3}-1} h_{2}^{2}\right]$
for problem P II and finally
(10) $H_{2}^{*}=\frac{h_{1}}{h_{3}}\left[\begin{array}{ccc}2 \alpha_{2}^{1 / 2}\left(1+h_{2} \sigma_{2}^{0}\right)+c_{2}^{0} h_{2}^{2} & -2 \alpha_{2}^{1 / 2} & \\ -\alpha_{2}^{1 / 2} & \alpha_{2}^{1 / 2}+\alpha_{2}^{3 / 2}+c_{2}^{1} h_{2}^{2} & -\alpha_{2}^{3 / 2} \\ & \ddots & \cdots \\ & \cdots \alpha_{2}^{M_{2}-3 / 2} \\ & -2 \alpha_{2}^{M_{2}-3 / 2} & 2 \alpha_{2}^{M_{2}-3 / 2}\left(1+h_{2} \sigma_{2}^{1}\right)+c_{2}^{M_{1}-1} h_{2}^{2}\end{array}\right]$
for problems P III and \mathbb{P} IV. In all matrices above α_{l}^{i} and c_{i}^{m} stand for the values of $\alpha_{i}\left(l h_{i}\right)$ and $c_{i}\left(m h_{i}\right)$ respectively for all possible values of l and m.

4. Transformation of the linear system

Referring to the matrices H_{i}^{*} we define the matrices C_{i} of order M_{i} as follows

$$
C_{i}=\left[\begin{array}{llllll}
a & & & & & \\
& 1 & & & & \\
& & \cdot & & & \\
& & & & & \\
& & & \cdot & & \\
& & & & & \\
& & & & &
\end{array}\right], i=1,2
$$

with the meaning of a and b given in Table III
TABLEIII

i		P I	P II	P III	$P I V$
1	a	1	1	1	1
b	$\sqrt{2}$	$\sqrt{2}$	1	$\sqrt{2}$	
2	a	1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$
	b	1	1	$\sqrt{2}$	$\sqrt{2}$

Together with the matrices C_{i} defined previonsly we also define the matrix C by the rclationship

$$
C=C_{2} \otimes C_{1}
$$

and multiply equation (6) from left by C^{-1}. Thus we obtain
(11)

$$
\left(A_{1}+A_{2}\right) u=\Phi
$$

where

$$
A_{i}=C^{-1} A_{i}^{*} C, \quad u=C^{-1} u^{*} \text { and } \Phi=C^{-1} \Phi^{*}
$$

It can be proved that

$$
A_{1}=J_{2} \otimes H_{1}, A_{2}=H_{2} \otimes J_{1}
$$

where the matrices H_{i} are given by the relationships

$$
H_{i}=C_{i}^{-1} H_{i}^{*} C_{i}
$$

and are symmetric. Using all the previous results concerning the new matrices A_{i} and H_{i} introduced above it can be proved that the matrices A_{i} possess the following properties
i) they are symmetric
ii) they commute and
iii) the eigenvalues of A_{i} are those of H_{i} (or equivalently those of H_{i}^{*}) with each eigenvalue repeated M_{k} times ($k \in I-\{i\}$).

For the numerical solution of linear system (11) by using E.A.D.I. methods we need (see e,g, [1] and [5] as strict as possible non negative bounds for the eigenvalues of the matrices A or, which is the same, for the eigenvalues of the matrices H_{i} or H_{i}^{*}. These bounds are given in the next section

5. Bounds for the eigenvalues of the matrices H_{i}^{*}

Let

$$
\begin{aligned}
& \alpha_{i}=\min \alpha_{i}^{1}, c_{i}=\min c_{i}^{m} \text { and } \\
& \bar{\alpha}_{i}=\max \alpha_{i}^{1}, \bar{c}_{i}=\max c_{i}^{m}
\end{aligned}
$$

be the extreme values, for all permissible values, of α_{i}^{1} and c_{i}^{m} in each case. Let also λ be any eigenvalue of the matrix H_{i}^{*}. In a way analogous to that developed in [3] it can be shown that λ is bounded as follows

$$
\begin{equation*}
\underline{\alpha}_{i} \frac{h_{k}}{h_{i}} \lambda_{\min }+c_{i} h_{1} h_{2} \leqq \lambda \leqq \bar{\alpha}_{i} \frac{h_{k}}{h_{i}} \lambda_{\max }+\bar{c}_{i} h_{1} h_{2} \tag{12}
\end{equation*}
$$

where $k \in I-\{i\}$ and $\lambda_{\min }$ and $\lambda_{\max }$ are the minimum and the maximum eigenvalues of a matrix A or strict lower and upper bounds for these eigenvalues respectively. The matrix A which differs from problem to problem is defined in the analysis which follows.

For the eigenvalues λ of the matrix H_{i}^{*} given by (7) we have from (12) that

$$
\begin{equation*}
\underline{\alpha}_{1} \frac{h_{2}}{h_{1}} \lambda_{\min }+c_{1} h_{1} h_{2} \leqq \lambda \leqq \bar{\alpha}_{1} \frac{h_{2}}{h_{1}} \lambda_{\max }+\bar{c}_{1} h_{1} h_{2} \tag{13}
\end{equation*}
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ are strict lower and upper bounds for the eigenvalues of the matrix A defined by

$$
A=\left[\begin{array}{rrl}
2 & -1 & \tag{14}\\
-1 & 2 & -1 \\
& \ddots & \\
& -12 & -1 \\
& -2 & 2+2 h_{1} \sigma_{1}^{1}
\end{array}\right]
$$

To find $\lambda_{\min }$ and $\lambda_{\max }$ we work as follows. The eigenvalues of the matrix A are the roots of the determinental equation

$$
g(\lambda)=\operatorname{det}(A-\lambda I)=\left(2+2 h_{1} \sigma_{1}^{1}-\lambda\right) T_{M_{1}-1}(\lambda)-2 T_{M_{1}-2}(\lambda)=0
$$

where $T_{M}(\lambda)$ is the determinant of order M given by

$$
T_{M}(\lambda)=\left|\begin{array}{rrr}
2-\lambda & -1 & \\
-1 & 2-\lambda & -1 \\
& \ddots & \\
& -1 & 2-\lambda \\
& & -1 \\
& & 2-\lambda
\end{array}\right|
$$

From this determinant we can readily obtain that

$$
T_{M}(\lambda)=(2-\lambda) T_{M-1}(\lambda)-T_{M-2}(\lambda)
$$

with $T_{0}(\lambda)=1$ and $T_{1}(\lambda)=2-\lambda$ which, in turn, give that $T_{M}(0)=M+$ +1 . Therefore $g(0)=2\left(h_{1} M_{1} \sigma_{1}^{1}+1\right)>0$. Thus if we put

$$
\begin{equation*}
\lambda=4 \sin ^{2} \frac{\varphi}{2}, \quad \varphi \in(0, \pi) \tag{15}
\end{equation*}
$$

we can prove that

$$
T_{M}(\lambda)=\frac{\sin (M+1) \varphi}{\sin \varphi}
$$

and also that

$$
g(\lambda)=\frac{2}{\sin \varphi} g_{1}(\varphi)
$$

where

$$
g_{1}(\varphi)=h_{1} \sigma_{1}^{1} \sin M_{1} \varphi+\cos M_{1} \varphi \sin \varphi
$$

We distinguish two cases according to whether σ_{1}^{1} is zero or not
$1^{\text {st }}$ case: $\sigma_{1}^{1}=0$
In this case $g_{1}(\varphi)=0$ implies that $\cos M_{1} \varphi=0$ which gives

$$
\varphi=(4 k+1) \pi / 2 M_{1} \left\lvert\, k=0(1)\left[\frac{M_{1}-1}{2}\right]\right. \text { and }
$$

(16)

$$
\varphi=(4 k-1) \pi / 2 M_{1} \left\lvert\, k=1(1)\left[\frac{M_{1}}{2}\right]\right.
$$

We observe that the number of the eigenvalues of H_{1}^{*} which are obtained by substituting expressions (16) into (15) is $\left[\frac{M_{1}-1}{2}\right]+1+\left[\frac{M_{1}}{2}\right]=M_{1}$ and this is equal to the total number of the eigenvalues of H_{1}^{*}. Therefore

$$
\lambda_{\min }=4 \sin ^{2} \frac{\pi}{4 M_{1}} \text { and } \lambda_{\max }=4 \cos ^{2} \frac{\pi}{4 M_{1}}
$$

These values for $\lambda_{\min }$ and $\lambda_{\max }$ are used apparently in relationships (13) $2^{\text {nd }}$ sase: $\sigma_{1}^{1}>0$
In this case we can get

$$
\left.g_{1}\left(\frac{k \pi}{M_{1}}\right)=(-1)^{k} \sin \frac{k \pi}{M_{1}} \right\rvert\, k=1(1) M_{1}-1
$$

which implies that an odd number of roods of $g_{1}(\varphi)$ lies in each interval $\left.\left(\frac{k \pi}{M_{1}}, \frac{(\kappa+1) \pi}{M_{1}}\right) \right\rvert\, k=1(1) M_{1}-2$. In addition to that we observe that if we differentiate $g_{1}(\varphi)$ with respect to φ we obtain

$$
g_{1}^{\prime}(\varphi)=\left(h_{1} M_{1} \sigma_{1}^{1}+\cos \varphi\right) \cos M_{1} \varphi-M_{1} \sin M_{1} \varphi \sin \varphi
$$

Thus we have that $g_{1}(0)=0, g_{1}^{\prime}(0)=h_{1} M_{1} \sigma_{1}^{1}+1>0$ and $g_{1}\left(\frac{\pi}{M_{1}}\right)=-$ $-\left(h_{1} M_{1} \sigma_{1}^{1}+\cos \frac{\pi}{M_{1}}\right)<0$.
These last relationships imply that an odd number of roods lies in the interval $\left(0, \frac{\pi}{M_{1}}\right)$. Moreover if we put

$$
\varphi=\pi+i \theta, \quad \theta>0 \text { and } i=\sqrt{-1}
$$

we obtain

$$
g_{1}(\varphi)=(-1)^{M_{1}} i g_{2}(\theta)
$$

where

$$
g_{2}(\theta)=h_{1} \sigma_{1}^{1} \operatorname{sh} M_{1} \theta-\operatorname{ch} M_{1} \theta \operatorname{sh} \theta
$$

Thus we have that to every positive root of $g_{2}(\theta)$ there corresponds a root of $g_{1}(\varphi)$ greater than 4. Because of the relationships $g_{2}(0)=0$ and lim $g_{2}(\theta)=+\infty$ which are readuly obtained we come to the conclusion that if we choose $\theta_{0}=\operatorname{arcsh}\left(h_{1} \sigma_{1}^{1}\right)$ we get $g_{2}\left(\theta_{0}\right)<0$. Consequently an odd number of roots of $g_{2}(\theta)$ is positive. Thus we have succeded in determining the position of all the roots of $g_{1}(\varphi)$. Therefore in this present case we can take $\varphi=\frac{\pi}{2 M_{1}}$, because of the relationship $g_{1}\left(\frac{\pi}{2 M_{1}}\right)=h_{1} \sigma_{1}^{1}>0$ which is valid. Hence

$$
\lambda_{\min }=4 \sin ^{2} \frac{\pi}{4 M_{1}}
$$

For $\lambda_{\max }$ we can take

$$
\lambda_{\max }=\min \left\{\|A\|_{1},\|A\|_{\infty}\right\}= \begin{cases}=4+2 h_{1} \sigma_{1}^{1} & \text { if } \sigma_{1}^{1}<\frac{1}{2 h_{1}} \\ =5 & \text { if } \frac{1}{2 h_{1}} \leqq \sigma_{1}^{1} \leqq \frac{1}{h_{1}} \\ =3+2 h_{1} \sigma_{1}^{1} \text { if } \frac{1}{h_{1}}<\sigma_{1}^{1}\end{cases}
$$

For the matrix H_{i}^{*} given by (8) we have that its eigenvalues λ are bounded as in relationships (12) with $\lambda_{\min }$ and $\lambda_{\max }$ being referred to the eigenvalues of the matrix A given by

$$
A=\left[\begin{array}{lrrr}
2 & -1 & & \\
-1 & 2 & -1 & \\
& \ddots & & \\
& -1 & 2 & -1 \\
& & -1 & 2
\end{array}\right]
$$

As is known the eigenvalues of A above are given by the expressions $\left.4 \sin ^{2} \frac{k \pi}{2\left(M_{i}+1\right)} \right\rvert\, k=1(1) M_{i}$ therefore

$$
\lambda_{\min }=4 \sin ^{2} \frac{\pi}{2\left(M_{i}+1\right)} \text { and } \lambda_{\max }=4 \cos ^{2} \frac{\pi}{2\left(M_{i}+1\right)}
$$

For the matrix H_{2}^{*} given by (9) we have that its eigenvalues are bounded as follows

$$
\begin{equation*}
\alpha_{2} \frac{h_{1}}{h_{1}} \dot{\lambda}_{\min }+c_{2} h_{1} h_{2} \leqq \lambda \leqq \bar{\alpha}_{2} \frac{h_{1}}{h_{2}} \lambda_{\max }+\bar{c}_{2} h_{1} h_{2} \tag{17}
\end{equation*}
$$

with $\lambda_{\min }$ and $\lambda_{\max }$ being referred to the eigenvalues of the matrix A given by

$$
A=\left[\begin{array}{cccc}
2+2 \hbar_{2} \sigma_{2}^{0} & -2 & \\
-1 & 2 & -1 & \\
& \ddots & \\
& -1 & 2 & -1 \\
& & -1 & 2
\end{array}\right]
$$

This present case is obviously analogues to the one where A was given by (14).

Therefore we can obtain similat results. More specifically if $\sigma_{0}^{2}=0$

$$
\lambda_{\min }=4 \sin ^{2} \frac{\pi}{2 M_{2}} \text { and } \lambda_{\max }=4 \cos ^{2} \frac{\pi}{2 M_{2}}
$$

while if $\sigma_{2}^{0}>0$
$\lambda_{\text {min }}=4 \sin \frac{\pi}{2 M_{2}}$ and $\lambda_{\text {max }}= \begin{cases}=4+2 h_{2} \sigma_{2}^{0} & \text { if } \sigma_{2}^{0}<\frac{1}{2 h_{2}} \\ =5 & \text { if } \frac{1}{2 h^{2}} \leqq \sigma_{2}^{0} \leqq \frac{1}{h_{2}} \\ =3+2 h_{2} \sigma_{2}^{0} & \text { if } \frac{1}{h_{2}}<\sigma_{2}^{0}\end{cases}$
Fiually, for the matrix H_{2}^{*} given by (10) we have that its eigenvalues λ are bounded as in (17) where now $\lambda_{\min }$ and $\lambda_{\max }$ are referred to the eigenvalues of the matrix A given by

$$
A=\left[\begin{array}{cccc}
2+2 h_{2} \sigma_{6}^{0} & -2 & & \\
-1 & 2 & -1 & \\
& \cdot & & \\
& & \cdot & -1 \\
& -1 & 2 & -1 \\
& & -2 & 2+h_{0} \sigma_{9}^{3}
\end{array}\right]
$$

This problem, however, was solved in [1] and was also presented in [2] where strict bounds for the eigenvalues of the matrix A above, that is the numbers $\lambda_{\min }$ and $\lambda_{\operatorname{mar}}$, were found. Therefore here we simply quote the results obtained in $[1]$.
So if we put $\Sigma=\sigma_{2}^{0}+\sigma_{2}^{1}$ and $\sigma=\max \left\{\sigma_{2}^{0}, \sigma_{2}^{1}\right\}$ we have that

$$
\lambda_{\min }=4 \sin ^{2} \frac{\varphi_{0}}{2}
$$

where
$\varphi_{0}=\left\{\begin{array}{ll}=\frac{\pi}{2\left(M_{2}-1\right)} & \text { if } \sin ^{2} \frac{\pi}{2\left(M_{2}-1\right)} \leqslant h_{2}^{2} \sigma_{2}^{0} \sigma_{2}^{1} \\ =\operatorname{Arcsin}\left(h_{2} \sqrt{\left.\sigma_{2}^{0} \sigma_{2}^{1}\right)}\right. & \text { if } 0<h_{2}^{2} \sigma_{2}^{0} \sigma_{2}^{1}<\sin ^{2} \frac{\pi}{2\left(M_{2}-1\right)} \\ =\frac{1}{\left(M_{\mathrm{a}}-1\right)} \operatorname{Arctn}\left(h_{2} \Sigma / \sin \left(\frac{\pi}{2\left(M_{2}-1\right)}\right)\right. & \text { if } \sigma_{2}^{0} \sigma_{2}^{1}=0\end{array}\right.$,
and

$$
\lambda_{\text {taax }}= \begin{cases}=4+2 h_{2} \sigma & \text { if } \sigma<\frac{1}{2 h_{2}} \\ =5 & \text { if } \frac{1}{2 h_{2}} \leqslant \sigma \leqslant \frac{1}{h_{2}} \\ =3+2 h_{2} \sigma & \text { if } \frac{1}{h_{2}}<\sigma\end{cases}
$$

6. Numerical example

We consider the differential equation

$$
\begin{equation*}
\frac{\partial^{\mathrm{a}} u}{\partial x_{1}^{2}}+\frac{\partial^{\mathrm{a}} u}{\partial x_{2}^{3}}=0, \quad x \in R \tag{18}
\end{equation*}
$$

where R is the interior of the rectangle with vertices $(0,0),(1.2,0),(1.2,1.0)$ and $(0,1.0)$. The solution \mathfrak{u} of the above equation is assumed to satisfy the following boundary conditions

$$
\begin{gather*}
u=0, \quad x \in \partial R_{D}=\partial R_{1}^{0} \cup \partial R_{1}^{1} \\
\frac{\partial u}{\partial x_{\mathrm{i}}}=0, \quad x \in \partial R_{N} \in=\partial R-\partial R_{D} \tag{19}
\end{gather*}
$$

According to the notation in section 2 we obviously have that

$$
\alpha_{1}\left(x_{1}\right) \equiv \alpha_{2}\left(x_{2}\right) \equiv 1, c_{1}\left(x_{2}\right) \equiv c_{2}\left(x_{2}\right) \equiv 0, \quad \sigma_{2}^{0}=\sigma_{2}^{1}=0
$$

Consequently it is apparent that our numerical example is a P III type problem.
T'o solve differential problem (18)-(19) numericaly we impose a uniform grid of mesh sizes $h_{1}=l_{1} / N_{1}=1.2 / 12=0.1$ and $h_{2}=l_{2} / N_{2}=1.0 / 10=$ $=0.1$ in the corresponding arbitrarily. If $u_{i_{6} i_{2}} \equiv u\left(i_{1} h_{1}, i_{2} h_{2}\right) \mid i_{1}=(1(1) 11$, $i_{2}=0(1) 10$ are the numerical solutions at the nodes $\left(i_{1} h_{1}, i_{2} h_{2}\right)$ of the grid then the discrete problem we have to solve is the following

$$
\begin{equation*}
\left(A_{1}^{*}+A_{2}^{*}\right) u^{*}=0 \tag{20}
\end{equation*}
$$

In matrix equation (20) we have that

$$
A_{1}^{*}=J_{2} \otimes H_{1}^{*}, A_{2}^{*}=H_{2}^{*} \otimes J_{1}
$$

with $J_{i} \mid i=1,2$ being the unit matrices of order $11, H_{i}^{*} \mid i=1,2$ are 11×11 matrices of the forms

$$
H_{1}^{*}=\left[\begin{array}{rrrr}
2 & -1 & & \\
-1 & 2 & -1 & \\
& \cdot & & \\
& \cdot & & \\
& -1 & 2 & -1 \\
& & -1 & 2
\end{array}\right], H_{2}^{*}=\left[\begin{array}{rrrr}
2 & -2 & & \\
-1 & 2 & -1 & \\
& \cdot & \\
& & & \\
& & 2 & -1 \\
& & & 2
\end{array}\right]
$$

and u^{*} the unknown vector of the numerical solutions at the nodes of the grid of the form

$$
u^{*}=\left(u_{1,0}, u_{2,0}, \ldots \ldots u_{11.0}, u_{1,1}, \ldots, u_{11,10}\right)^{T}
$$

2 - L'analyse numérique et là théarie de l'appraximation - Tome 7 No. 2, 1978

The great advantage of the numerical example considered is that both the differential problem (18)-(19) and its corresponding discret one (20) have apparently as their solutions the zero solution. This implies that the $m^{\text {th }}$ vector iteration approximation to u^{*} coming from the application of the E.A.D.I. method will coincide with the error vector $\varepsilon^{*(m)}$ of the same iteration.

In order to be able to solve numerically matrix equation (20) by using E.A.D.I. methods we have to transform it according to the theory developed in section 4. Thus we multiply equation (20) from the left by $C^{-1}=$ $=C_{2}^{-1} \otimes C_{1}^{-1}$ where $C_{i}^{\prime} \mid i=1,2$ are diagonal matrices of order 11 defined by

$$
C_{1}=\left[\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & \cdot & & & \\
& & & \cdot & & \\
& & & \cdot & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right], \quad C_{2}^{*}=\left[\begin{array}{ccccc}
\sqrt{2} & & & & \\
& 1 & & & \\
& & \cdot & & \\
& & & & \\
& & & & \\
& & & & \\
& & & \\
& & & & \\
2
\end{array}\right]
$$

Therefore equation (20) is transformed into

$$
\begin{equation*}
\left(A_{1}+A_{2}\right) u=0 \tag{21}
\end{equation*}
$$

where

$$
A_{i}^{i}=C^{-1} A_{i}^{*} C \mid i=1,2, u=C^{-1} u^{*}
$$

It is readily seen that

$$
A_{1}=J_{2} \otimes H_{1}, \quad A_{2}=H_{2} \otimes J_{1}
$$

where

$$
H_{1}=H_{1}^{*}, H_{2}=C_{\overline{2}}{ }^{1} H_{2}^{*} C_{2}=\left[\begin{array}{rrrr}
2 & -\sqrt{2} & & \\
-\sqrt{2} & 2 & -1 & \\
& -1 & 2 & -1 \\
& & \cdot & \\
& & \cdot & \\
& -1 & & 2
\end{array}\right]-\sqrt{2} 1
$$

So the smallest and the largest eigenvalues of H_{1} and H_{2}, and consequently of A_{1} and D_{2}, are the following

$$
\begin{array}{ll}
\lambda_{\min _{1}}=4 \sin \frac{2 \pi}{24}, & \lambda_{\max _{1}}=4 \cos \frac{2 \pi}{24} \\
\lambda_{\min _{\mathfrak{a}}}=0 \quad, & \lambda_{\max _{\mathrm{s}}}=4
\end{array}
$$

The E.A.D.I. scheme corresponds now to matrix equation (21) is the following (see [5])
(22)

$$
\begin{gathered}
\left(I+r_{m+1} A_{1}\right) u^{(m+1 / 2}=\left[\left(I+r_{m+1} A_{1}\right)-\omega r_{m+1}\left(A_{1}+A_{2}\right)\right] u^{(m)} \\
\quad \mid m=0,1,2, \ldots \\
\left(I+r_{m+1} A_{2}\right) u^{(m+1)}=u^{(m+1 / 2)}+r_{m+1} A_{2} u^{(m)}
\end{gathered}
$$

In scheme (22) I is the unit matrix of order $121, u^{(m)}$ is the $m^{\text {th }}$ iteration approximation to the solution u of (21), with $i^{(0)}$ arbitrary, ω is the extrapolation parameter, $r_{m+1}=r_{n} \mid n=1(1) n_{0}\left(n=m+1-n_{0}\left[m / n_{0}\right]\right)$ are n_{0} positive iteration parameters and $u^{(m+1 / 2)}$ an intermediate approximation to $u^{(m+1)}$. The optimum parameters to be used in connection with scheme (22) can be found in the way described in [5]. Thus by using the set of Samarskii Andreyev parameters we can finally obtain the following optimum results

$$
\omega=1.6449290, \quad n_{0}=2, \quad \rho=0.4492767
$$

(23)

$$
r_{1}=7.9238896, \quad r_{2}=0.5776515
$$

with ρ being the optimum amplification factor of the procedure.
Denoting by $u^{*^{(m)}} \mid m=0,1,2, \ldots$ the sequence of approximate vectors to the exact solution \boldsymbol{u}^{*} of equation (20) which are related to the cooresponding $u^{(m)}$ through the relationship

$$
u^{*(n)}=C u^{(m)}
$$

we can easily find out the corresponding error vectors $\varepsilon^{*(m)}$ and $\varepsilon^{(m)}$ will satisfy the same relationship namely

$$
\begin{equation*}
\varepsilon^{*^{(m)}}=C \varepsilon^{(m)} \tag{24}
\end{equation*}
$$

This is because the exact solutions of both equations (20) and (21) are such that $u^{*}=u=0$. Thus we come to the conclusion that in order to reduce the second norm of the initial error vector $\varepsilon^{*(0)}$ by a factor e we have to perform a number of s cycles with n_{0} iterations of type (22) within each cycle. The number s is found as follows. Since we want to have $\left\|\varepsilon^{*\left(s \cdot n_{0}\right)} \mid\right\| /\left\|\varepsilon^{*(0)}\right\| \leqq e$ and by virtue of relationship (24) the following are valid

$$
\varepsilon^{\left(s \cdot n_{0}\right)}=\left(\prod_{n=1}^{n} T_{n}\right)^{s} \varepsilon^{(0)}
$$

where T_{i} is the iteration matrix at the i iteration of scheme (22)

$$
\begin{gathered}
C^{-1} \varepsilon^{*^{\left(s \cdot n_{0}\right)}}=\left(\prod_{n=1}^{n_{0}} T_{n}\right)^{x} C^{-1} \varepsilon^{*(0)} \\
\varepsilon^{*\left(s \cdot n_{0}\right)}=C\left(\prod_{n=1}^{n_{0}} T_{n}\right)^{s} C^{-1} \varepsilon^{*(0)} \\
\left\|\varepsilon^{*\left(s \cdot n_{0}\right)}\right\| \leqslant\|C\| \cdot\left\|\prod_{n=1}^{n_{0}} T_{n}\right\|^{s}:^{\|}\left\|C^{-1}\right\| \cdot\left\|\varepsilon^{*(0)}\right\|
\end{gathered}
$$

Since

$$
\|C\|=\sqrt{2},\left\|C^{-1}\right\|=1 \text { and }\left\|\prod_{n=1}^{n_{0}} T_{n}\right\| \leqslant p
$$

[3] Avdelas, G., Hadjidimos, A., On the numerical solution of the self-adjoint second order elliptic partial differential equation, Proceedings of the Balkan Congress
[4] Greenspan, D., Introductory Numerical Andich August 1976).
[4] Greenspan, D., ", Introductory Numerical Analysis of Elliptic Boundary Value Prob-
[5] Hadjidimos
-475 (1970).
[6] FI a $1 \mathrm{mos}, ~ P . R .$, ,Finite dimensional vector spaces", Van Nostrand, Princeton (1958). Roceived 20.XII. 1977

Prof. Dr. A. Hadjidimos, Department of Mathematics, University of Ioannina, Ioannina, Greece.
Dr. G. Avdelas,
Department of Mathematics,
University of Ioannina
Ioannina
Greece.

