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Summnary. In this paper we present a method for the numerical solu-
tion of a model problem of the two dimentional Self-Adjoint second order
elliptic partial differential Equation under mixed boundary conditions.

1. Introduetion

In a previous paper of ours [3] the first three boundary value problems
for the two dimensional self-adjoint second order elliptic partial differential
equation (S.A.E.) were studied under the assumption that certain conditions
were fulfilled so that Extrapolated Alternating Direction Implicit (E.A.D.L.)
methods could be used for the numerical solution of them.

The purpose of this paper is to show how to develop a theory analogous
to that in [3] so that the numerical solution of the S.A.E. under mixed
boundary conditions could be obtained. As we shall see in the analysis
which follows, from the numerical point of view, the solution of the pro-
blem in question, presents no difficulties. This agrees wit what is already
known (see e.g. GREENSPAN [4] pp. 57—58) and becomes clear by wor-
king out a numerical example.

2. Statement of the problem and notation used

_ To facilitate the subsequent analyisis the following notations are
Introduced and used throughout this paper

I={l,2 withi eI OR, = R U 9R}

J ={0, 1} with j  J 0R = 0R, U 0R,

R ={x|x= (%, %) and 0<%, <} R=RU R

OR} = {x|x = (%, %,) and x; = jI;}



118 G. AVDELAS and A, HADJIDIMOS 2

Having introduced the notations above we consider now the S.AE.
(1) Lu = f(x), xR
where L is the elliptic operator defined by

@) = o sl 2+ 2 (ealm) Z) = ealwn) — ealx)

axl 62’2 Xy

with o(x;) > 0 and ¢;(%,) = 0i = I. The solution %, which is required to
satisfy the boundary conditions

(3) Iw=vi(%), x<oR, i=landje]

is assumed to be sufficiently smooth in B. The operator [ in (3) is defined
as the identity operator on one or more sides dR; of the rectangle R and as
the operator (— 1)i+1 ai + o} (ol 2 0) on the remaining sides 9R! i.e.

#;

= the identity operator on IR, =
= OR] U dR, or dR] |J R} or R, or 9R’

=l =(— 1+ a% + ol ondRy = dR — dR,

T~

Depending on the way the operator [ is defined we can distinguish four
different problems. These four problems, which are studied in the sequel,
are presented below schematically by giving in bold faced lines the part
of the boundary on which the operator I coincides with the identity opera-
tor.

We note that in the case where in at least one of the sides of the rec-
tangle R, parallel to the x;-axis, the boundary conditions are those of a
third type boundary value problem the corresponding coefifcient o,(x;)

Problem One (PI)
(0Rp = 0R} U 9 Ry)

Problem Two (PII)
(9R, = 9RY & RY)

J|l

|
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Problem Four (PIV)
(2R, = ORY)

Problem Three (PIII)
(0Rp = ORy)

x, hxz

2

1!!-3‘

|

in the elliptic operator L in (2) llnus‘E3‘ti)e constant is order for the analysis
iven in this paper to apply (see also . _

¥ For the pmf)mericalpgolugciou of problem (1) — (3) a uniform mesh of
size h; = /N, in z,-direction is imposed on R where N (2 3) is an ar'bII;
trarily chosen integer and then the differential equation (1) together wit
its boundary conditions (3) is approximated by appropriate difference
equations at all mesh points. In what follows we adopt the notation #; .,
to represent the approximate value to #(i,h, 15h,).

3. Diseretisation of the differential problem

Iet B be the operator acting on #; ,, and defined by one of the four
expressions (4) below

4a)
= '15‘ Sx-(%(xf)Sx,-) — (%)) (

Rt ) e )

. L 4-(1 — 1)y 2 — c.(x;

= 5 S (()8y) — a5 (L — PR 2| EEYT — o(x)
B, = 2“"(“’" + %) ‘ (4c)

= A, — ko) - aln)
ki :
20:,'(}{,; — I_; (4d)
\ = T (Ve + kif’}) — ¢;(%;)

In the expressions above §,, E., A, and V, are the .central difference,
the shifting, the forward difference and the backward difference operat.ofys
in x-direction respectively. The expression to be used for B, in a spect ic
case depends on the value of 4, the position of the point x = (%1, xZ)ﬂT
= (13hy, 13hy) in R and the problem being solved. In each case a'}lsi?lg t e
appropriate expression for the operator B; is used according to Table
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TABLE T
Expression | Problem i Ranges or values for 7, Ranges or values for g
1 2, Ny — 1] [1, N, — 1]
PI e
2 [1, N,] 2, N, — 2]
1 [2, N; — 1] [0, N, — 1]
PII —_
2 (L, Ny] (L, N, — 2]
4a
1 [2, N, — 2] [0, N,]
PIII
2 {1, N, — 1] 1, N, —1]
1 (2, Ny — 1] [0, N,]
PIV
2 [1: Nl] [l! Nﬁ . 1]
1 1 1, N, — 1
L LN, —-1]
2 (1, Ny] 1, N, —1
4b 1 1 0, N, — 1
i 0, N, —1]
2 [1, Ny] N, —1
PIII 1 1, N, — 1 [0, N,J
PIV 1 1 [0, N,]
PII 2 [1, N;] 0
4c PIII 2 [1, Ny — 1] 0
PIV 2 1, N1 0
PI 1 N, [1, N, — 1]
PII 1 N, [0, N, — 1]
4d PIII 2 [1, N, — 1] N,
1 N. N,
PIV 3 [01 2]
2 [1, N,] N,
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Using the appropriate forms of the operator B, given by expressions
(4) the differential problem (1) — (3) is replaced by the following discrete

one
(5) (By + Bo)thiy, = 9iyi,y % = (%1, %) = (415, ishy) € R — 0R,

where the values for ¢,,, are easily obtained from the R.H.S. of equation
(1) and the corresponding boundary conditions. It can be found out that
equations (5) have a truncation error 0(h2) + O(%%) except in the case
where the point x involved lies on dRy. Then according to which side of
the rectangle the point x lies on, the corresponding exponent in %, is decrea-
sed by one.

If we define the integers K, and L, | ¢ « I according to Table IT

TABLE II
Problem K, K, L, L,
PI 1 1 N, Ny, — 1
P II 1 0 N, N, —1
P II1 1 0 N, —1 | N, 1
P IV 1 0 N, N,

and denote the expression L; — K; 4 1 by M,|i = I we can readily see
that the totality of equations (5) can be written in matrix from as follows

(6) (AF4 AF) u* = P*

In matrix equation (6) above 4§ are known matrices of order M,M oy WX
1s an unknown M, M ,-dimensional vector of the form

w* = (Urk, YKk 41,Kp -+, WL K, VK, K410 B4, Katls oo, #rp,)T
and @* a known M,M,-ditmensional vector given by
%
Q¥ = — Iuls(9xiky PRt Ke ++or DLy PRy Kibls PRibl Kotls - or O1,L)T-

The matrices A* have the following product forms
A =], @ HY and 4f = H¥ ® ],

with ], being unit matrix of order M, H¥ a matrix of order M; being
8lven below and the symbol ® denoting tensor product as is defined in
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HAIMOS [6]. The matrices H¥ are given for the four different problems

122

as follows

(7) H¥ ="
hy

— &

32
1

™ 12 1,2
! + 3?4 ik

3/2
OC]I

for problems PI, PII and PIV,

3/2
.

- 1/2 3/2 1,2
a4 a® 4 cihi

3/2
0(,;/

3/2
— o
5/2 2,2 5/2
4 a1 + — &
. M,—1/2
— o I

— 20" 201 + Byod) + i

3/2 -1
—
5/2 272 5/2
| OC,'/ —}—C.;hi T O(il
M.—1/2
_dil ,
M.—1/2 M.—1/2 M.—1/2 M,72
— T T T e

for k & I — {4} and problem P III for ¢ = 1 and problem P I for ¢ = 2,

for problem P II and finally

1/2
N

— &

112
2

20l (1 + haaf) + oA

"2y (1 + hyol) + o3}

1/2
-—20(2
12 3/2 1,2 3/2
062/ —+ 012/ +02hz — Oo
My—3)2
— ol /
M,—3/2  M,—3/2 M,—1/2 My—1,2
— oy’ ! og ' /+0¢2’ /+C2' ha ]

— 20&’2
sl + odl? -+ chs  — adl®
M,—3/2
— U2

— 2ad% =21 4 hyol) +c2" "

for problems P III and P IV. In all matrices above « and ¢!* stand for
the values of «, (Ih;) and c;(mh;) respectively for all possible values of !

and m,
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4. Transformation of the linear system

123

Referring to the matrices H¥ we define the matrices C; of order M,

as follows

]
b

with the meaning of a and b given in Table ITI

TABLXE ITI

i PI | PII|PIII|P IV

a 1 «/E «/g \/E

b 1 1| V2 | 42

Together with the matrices C; defined previously we also define the

matrix C by the rclationship

C=C,®C,
and multiply equation (6) from left by C-1. Thus we obtain
(11) (A, + A) u =0
where
A, =C-14*C, u = C-u* and ® = C-1P*

It can be proved that
4, = J,® H,, Ay = H2®]1

Where the matrices H; are given by the relationships

H, =C{ H¥C,
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and are symmetric. Using all the previous results concerning the new matri-
ces 4; and H; introduced above it can be proved that the matrices A4,
possess the following properties

1) they are symmetric

if) they commute and

iii) the eigenvalues of A, are those of H; (or equivalently those of
H}) with each eigenvalue repeated M, times (k < I — {i}).

For the numerical solution of linear system (11) by using E.A.D.I.
methods we need (see e,g, [1] and [5] as strict as possible non negative
bounds for the eigenvalues of the matrices A or, which is the same, for
the eigenvalues of the matrices H; or H¥. These bounds are given in the
next section

5. Bounds for the eigenvalues of the matrices H*

Let
: 1 .
= min «;, ¢, = min ¢’ and

]
— "
C;

%
o, == max c;

1

— max o,
.. 1 .

be the extreme values, for all permissible values, of «; and ¢}* in each

case. Let also A be any eigenvalue of the matrix H¥. In a way analogous
to that developed in [3] it can be shown that A is bounded as follows

(12) a,.f—" Aain - ¢l S A S &,.f_k Aamax - Ehalty
— B4 b .

whete 2 = I — {i} and A and Ay, are the minimum and the maximum
eigenvalues of a matrix 4 or strict lower and upper bounds for these eigen-
values respectively. The matrix 4 which differs from problem to problem
is defined in the analysis which follows.

For the eigenvalues A of the matrix H¥ given by (7) we have from
(12) that

(13) 2% dia - Calilty S NS By 2 s + iy
1

X

b
-

where Anin and Amex are strict lower and upper bounds for the eigenva-
lues of the matrix 4 defined by

2 —1
—1 2 —1
(14) A=
—12 —1
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To find Amin and Am.x we work as follows. The eigenvalues of the matrix
A are the roots of the determinental equation

g(A) =det (A — Al) = (2 + 2801 — NTp,—1 (A) — 2T 3, 2(A) = O
where T,,(}) is the determinant of order M given by
2—x -1

—1 2—2x -1

Ty(n) = E
-1 2—x =1
—1 2 -2

From this determinant we can readily obtain that
TM(7\) T (2 e )\)Tﬂl—-l(7\) s TM—2(7\)

with Tp(2) = 1 and T;(2) = 2 — X which, in turn, give that T,(0) = M
4- 1. Therefore g(0) = 2(h,M,06} + 1) > 0. Thus if we put

(15) A=dsit 6 < (0, n)

we can prove that

T _sin (M 4 1)e
(M) STy
and also that
2

g(n) = ™ ?gl’(tp)

where
£1(9) = Myoisin My ¢ 4 cos Mg sin ¢
We distinguish two cases according to whether o} is zero or not

Ist case: ot =
In this case g; (¢) =0 implies that cos M, ¢ =0 which gives

¢ = (4k -+ D)m/2M, |k = 0(1) [M—z‘_l] and
(16) |

¢ = (4k — 1)n/2M, |k = 1(1) [%J
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We observe that the number of the eigenvalues of H* which are obtained
M, —1 M.
o | PAS]=

and this is equal to the total number of the eigenvalues of H*. Therefore

by substituting expressions (16) into (15) is

Amtn = 4 5in%2 —=— and Mg = 4cos?
min S an, max S ;
These values for Apmy and Auex are used apparently in relationships (13)

204 sase: o] > 0
In this case we can get

R, C\k o E . -
gl(w_( 1)* sin o7 B =10M; — 1

which implies that an odd number of roods of g,(¢) lies in each interval

;—;, (k;:ll)n |k = 1(1)M, — 2. In addition to that we observe that if
we differentiate &1(¢) with respect to ¢ we obtain

gi(p) = (7M1} + cos @) cos My ¢ — M, sin M, o sin ¢
Thus we have that £(0) =0, g (0) =~rMet+1>0 and g (%) =
ps

1

— (kIMlci + cos ﬁ) < 0.
These last relationsﬁips imply that an odd number of roods lies in the inter-

val (O, —1) . Moreover if we put
M,

¢=m+416, 0>0and i =4,— 1

we obtain
ga(e) = (— 1) 4g,(6)

where
£5(0) = Aot shM,0 — ch M, 0sh0

Thus we have that to every positive root of g,(6) there corresponds a root
of gi(¢) greater than 4. Because of the relationships g,(0) = 0 and lim

6= 00
gs(0) = + co which are readuly obtained we come to the conclusion that
if we choose 0, = arcsh (%;6) we get g,(0,) < 0. Consequently an odd number
of roots of g,(0) is positive. Thus we have succeded in determining the
position of all the roots of g;(¢). Therefore in this present case we can take

™ ™

9= because of the relationship g, (m) = kot > 0 which is valid.

1
Hence

1

Amin = 4 sin? 4‘"

1
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For Amex We can take
=4 1 2hqt if c}<é;_

1

Amex = min {||4]]1, [|4]]o} =¢ =5

=3+2hlc}ifhl<c}
1

For the matrix H¥ given by (8) we have that its eigenvalues A are
bounded as in relationships (12) with A and Apas being referred to the
eigenvalues of the matrix 4 given by

=0 1 =
—1 2 —1
A = EN
~1 2 ~1
As is known the eigenvalues of A above are given by the expressions
4sing —*m & = 1{1)M; therefore
2(M; + 1)

Amin = 4 sin? and Aper = 4 cos?

For the matrix H} given by (9) we have that its eigenvalues are bounded
as follows
;2 7\mux + Ezhlhz

1 a

(17) 0‘2::—1 7A\min + calshy £ A S E2

With Ay and Amee being referred to the eigenvalues of the matrix 4 given by

T2 4 2hy0) —2 i
—1 2 -1
4=
-1 2 -1

—1 2

'(l;his present case is obvicusly analogues to the one where 4 was given by
4),
Therefore we can obtain similar results. More specifically if o = 0

Amin = 4 sin?

T T
and Mpexy = 4 cos? —
2M, = aM,
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while if o > 0

— 4 4 ol if o) < =

(43

fiA

if — < o}

: n 1
Amin=4 sin —— and Amax = ¢ = 5 29 ]7;

2M,

— 8 4 2hya! if’l<cg
(4

Fiually, for the matrix H¥ given by (10) we bave that its eigenvalues
» are bounded as in (17) where NOW Amin and Am,. are referred to the eigen=
values of the matrix 4 given by

2 1 20l —2
1 2 -]

—1 2 —1
L —2 2 + hooy
This problem, however, was solved in [1] and was also presented in [2]
where strict bounds for the eigenvalues of the matrix 4 above, that is the
numbers A and Amar, were found. Therefore here we simply quote the
results obtained in [1].
So if we put X == ¢} + o} and ¢ = max {a}, o}} we have that

Amin = 4 sinz%"

where
TS if sin® < Mool
2(M; — 1) M, — 1)
@y = = Arcsin (h, A/oY0h) if 0 < Molol < Sin22—(h
1 . .
mir Arctn(hzz/sm(z—(n-z-”_l—)) if olcl =0
and
=4 4 e if ¢ <
2k,
7\1unx= =5 lf-—1—§o‘§_l-
2’1, h’
=3 + 24,0 ifhi<a

2
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6. Numerical example

We consider the differential equation
ot d*u
18 — 22 =0,
(18) ox2 T %3

where R is the interior of the rectangle with vertices (0, 0), (1.2, 0), (1.2,1.0)
and (0,1.0). The solution u of the above equation is assumed to satisfy
the following boundary conditions

%< dRp=9RY | OR:

¥ e« R

u =0,

19 |
(19 9 0, xcdRy = = dR — OR,

0%y
According to the notation in section 2 we obviously have that
% (%) = %y(%) =1, (%) = cp(%,) =0, o} =o0}=0

Consequently it is apparent that our numerical example is a P III type
problem.

To solve differential problem (18)—(19) numericaly we impose a uniform
grid of mesh sizes %, = LN, = 1.2/12 = 0.1 and %, = l/Ny = 1.0/10 =
= 0.1 in the corresponding arbitrarily. If u.,, = w(iyhy, 14hy)|i, = (1(1)11,
iy = 0(1)10 are the numerical solutions at the nodes (1,4, ixh,) of the grid
then the discrete problem we have to solve is the following

(20) (4] + ADur = 0
In matrix equation (20) we have that
AT=7.0H], 4;=H;® ],

with [.|¢ = 1,2 being the unit matrices of order 11, Hfi = 1,2 are 11 x 11
matrices of the forms

2 —1 2 -2
—1 2 —1 =l 12 =1

H = B , H

—1 2 -1 —1 2 —1
—1 2 —2 2

and #* the unknown vector of the numerical solutions atthe nodes of the
grid of the form

u* = (4,0, Mg, +... %110, W11, -+, #11,10)7

2~ L’analyse numérique et la théorie de l'approximatian — Tome 7 No. 2, 1978
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130

14

o1 idered is that both the
The great advantage of the numerical example considere at 1
differgential problem (18)—(19) and its corresponding discret one (20) 11ay§
apparently as their solutions the zero soh_Jtlou. This 1mpl1esl tha_.t the m
vector iteration approximation to #* coming from the application of the

E.A.D.IL method will coincide with the error vector ¢*tm of the same itera-

tion.

In order to be able to solve numerically matrix equation (20) by using

: ‘m i rordi ‘o the theory develo-
A.D.I methods we have to transform it according to v
;E)ed in section 4. Thus we multiply equation (20) from the left by C-1 =
— C-1' ® C-! where Cjli = 1,2 are diagonal matrices of order 11 defined
— Y2 1

by =

1 V2

1 1
Cl = 1 C; =
1

- 1 -al -
Therefore equation (20) is transformed into
(21) (Ay + A)u =0
where

A; = C-14Cli = 1,2, u = C7lu*
It is readily seen that

A1=]2®H1. A2=H2®]1
where _
T2 =42
—A2 2 -1
—1 2
H, = Hi, H, = CsHiC, =
-1

—1

2
—\Z

.z

2

So the smallest and the largest eigenvalues of H, and H,, and consequently

of A, and D,, are the following

: . 2m ' 2_1c
Amin, = 4 sin 2 Amaz, = 4 COS o

Amax, = 4

)\min, =0 »
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The E.A.D.I. scheme corresponds now to matrix equation (21) is the follow-
ing (see [5])

(I + 7w dy)ulm 12 = [(I 4 711 4;) — 07pa(4;) + 4,) Jum
m=0,1,2 ...

(I + V1 Aum+1) = gm+1i2) oy A gl

(22)

In scheme (22) I is the unit matrix of order 121, #( is the mtt iteration
approximation to the solution % of (21), with 5@ arbitrary,  is the extra-
polation parameter, 7n41 =7, |8 =1{1)n, (n =m + 1 — ny[m/n,]) are
no positive iteration parameters and #("+!/2 an intermediate approxima-
tion to u™+V, The optimum parameters to be used in connection with
scheme (22) can be found in the way described in [5]. Thus by using the
set of Samarskii Andreyev parameters we can finally obtain the following
optimum results

w = 1.6449290,

ny = 2, o = 0.4492767

(23)

7, = 7.9238896, 7, = 0.5776515

with p being the optimum amplification factor of the procedure.

Denoting by px™ lm =20, 1, 2,... the sequence of approximate vectors
to the exact solution #* of equation (20) which are related tothe coorespon-
ding %) through the relationship

w® ™ — Cgytm

we can easily find out the corresponding error vectors e*™ and ¢
will satisfy the same relationship namely

(24) e+ — Cetm

This is because the exact solutions of both equations (20) and (21) are
such that #* = u = 0. Thus we come to the conclusion that in order to
reduce the second norm of the initial error vector e* by a factor ¢ we
have to perform a number of s cycles with #, iterations of type (22) within
each cycle. The number s is found as follows. Since we want to have

lex® 7 1/]]e*'?]| s ¢ and by virtue of relationship (24) the following are
valid

iy s
gls m) — (1__[ T”) e

sl
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where T, is the iteration matrix at the ¢ iteration of scheme (22)

C-1exb™ — (ﬁ T,,)' C-1e+®,

=1

exm — [T 7,) c-1ev®,

=1

N

et <y | IT 7, 1= - e
Since
ICll =2, 1IC-1I =1 and |H T,| <o -
then
(¢ < /267 |e*]
or

g 0 S
e 11149 < 426",

Whence it is sufficient to require

o' < efyf2
that is : -
5 = [in (efy/2)fin(e)] + 1

Taking e.g. ¢ = 10-% we can fiind that s = 18.

This special example was run on the UNIVAC 1106 Computer of the
University of Salonika by choosing as #*(© the vector with all its compo-
nents equal to unity. Thus we found out the reduction by a factor of 10-°
in the norm of the initial error vector was achieved after 15 cycles which
was far better than the number of 18 cycles we had expected from the
theory. .
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