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1. Introduetion. In the recent years many authors devoted themselves
to giving new proofs of the famous theorem of jackson [2], TiMAN [5]
and | TFLYAKOVSKI, [4] coPENcapz [1] on the approximation of con-
tintots Tunction definéd on [—1, 1] by algebraic polynomials.."A num-
ber of constructive proofs now occur in the literature. Many of them
involve the construction of procedures which 1r1tcrpolate the function to be
approximated.at a given. set of nodes. Our task in this series is to give
interpolation 'operators which provide with the new proofs of the above
theorems for differentiable functions. Inthis first | communication we
construct the operators V,(f, %) (» =0,1)! and study their:approxima-
tmg properties towards functions f(x) given on [—1, 1]. We find that
V. (f, %) satisfies Jackson’s inequality when flx) € C*[—1, 1. The opera-
tors I-’m,(,f %) satisfy Timan’s inequality’ for f‘L‘lllLthﬂb flx ) e 0[], 1].
At the same time the Trigub’s inequality on the derlvatlvc of approximating
polynomials is also satisfied. We mention that V,,(f, %) does mnot appear
to be strong cnough so as to satisfy Timan's mcquahtv However, a little
modification may sharpen the estimates, but that does not fulfil our aim
of proving Timan’s theorem for differentiable functions. For this we have
to consider other operators and this will be the'content of our next communi-
cation. The source of these investigations is the work of xi1s-vER’ TESI [3]
which all depends on the identity of a.m®. TURECKII [7]. We shall also
obtain few identities which, cp-rt from their use licre, are interesting in
their own right. ‘ j : BV

1) C1[— 1, 1] denotes the class of functions whose first derivatives are continuous on
{(—1, 1] Lo
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" th2. {Dhe . operator V.i(f, #). Let —~1x< '€ 1, cosit =% and cos b = X5,
1 i ;

(2.1) tk,,zzjkfl,kzo,n”; n=12 ...

Further for k = —u, 7, let

2n + 1
sin 2 {‘ i "'J'm)

(2.2) Lin(t) =
(21 -+ 1) sin i) (b — thy)
and
(2.3) Ui(f) = % (25 I,(t) — 32 B,(8) + 10 z,?,,ki)].

Then for any arbitrary functlon f( ¥) given on [—1, 1], we define the
operators : ’

¥

@A) Tl @) =0 (x4 1) ()
o
o &L@o (% = )Y [N ) — (% 4= 1)y oI I)]ﬁk,,(x} oy,
where o st
‘(25) i 1" Uon(x) "—_‘: on(t) 5 vk,,(x) — uk’,‘() + w_ Im() [‘ Ikz ‘—‘—h
The jproperties. of the operators V,,,( f, %) are givenin it
-'I’HEOREM 1. For » =0, ) !
,:( a) V,,,(f x) 4s an. algebraic polynomml of degree ree, < < 61 + 1 m x,
(b) VA7 n) = 0 () (el o huemi0, Wi |
‘Proof, Since - i ,\_ \ RN :
L2411
. SI'F=o=n (b - igy) #
(2:6) —’ =142 cosii(t — t),

) (s F=1 4
sin iz (¢ — tra)

therefore

6
Wpn(t) = EC,- cos J(t — trn), k= —mn n'
=

%) k=0, n stands for k=0, 1, 2, ..., n.

o 4
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where C; are some numbers. Hence

6n 61

Vou(% E C; cos ]t and vk,‘( = 2;/;,; oF ‘cos{ jt COS Jlpu,

from which the assertion (a) follows. ¢ )
To prove (b) it is sufficient to show that

(2.7) Vin(%js) = 8 and vi(%;) = 0
We observe that

(2.8) lk,,(tj”) = 3y (& 7 =0, £1, £2,..., £n) &
and so on account of (2.3) |
(2.9) alt) = S (5, R =0, £1, 42, .. fn)

from which the first part of (2. 7) follows after using (2.5). Further from (2.3)
on differentiation

wip(l) = < (100 5,(1) — 160 in(t) + 60 Fa(0)] Zha(e),

uf(t) _4% [100 ;,(t) — 160 Ii(t) + 6O I5a(t) ] Uhult) +

1 g (300 12,(t) — 640 2,(t) + 300 It() ] 4i(1),

from which on using l,(fm) == 0, which is an easy consequence of (2.6); it
follows that

(2.10) (&m0 L] 9, s )

Now differentiating twice the formula wo,(cos f) = wu,,(f) we have

Mlén(tjn) = ul\n( ;u) — O

(2.11) —sin ¢ vou(cos £) = w(t),

(2.12) sinZ  wvg,(cos t) — cost wy,(cos t) = ng, ().

Using (2.10), we have from (2.11)

(2.13) van(%) =0, ' 1§ =TTn i !
and from (2.12)

(2.14) Von(%ion) == 0, Vin(%s) = 0, j'=1, m.

Similarly if we differentiate twice the formula

Vin(COS 1) = wpalt) + U_palt), k=1, 7,
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and use (2.10), then we get

2.15) Vha(%jn) = 0, j =0, n and
(2.16) Vi) =0, j=1n
Hence combining (2.13), (2.14), (2.15) and (2.16), we get
ok =0, (hj =01
(2.17) A s (k =0, n)
vkn(xjn) — 0 ('7 2 m)

In the same way it follows that ]

Vi) =0, (=0, n J=1,n),,,

3. Some identities. Wc have the tollowmg
Lemma 1. Let

"
m E lku

k=—n
then
1
3.1 Sy = 32 L ER o g —— e
(3.1) 8 = g L8 3 s ) ok (i o L) cos (2o 1),
< 1
32 R = 2 97 | I ; 2 i
A5 s o (2 4 12 (8% 81 4 8) - Am(in 4 1) cos (20 + 1)1,
(3.3) " Sy =l [(2300* + 46017 - 370u2 + 140 -t 24) 471
41(2n 4 1) ‘

+ 2(76n* + 1521 + 104 n2 4 28n) cos (2n + Lyt 4
+ 2;1(11- — 1)(n + 2) cos (4n 4 2)¢],
(3.4) S, =

(88nt + 17613 4 142n® + 54n 4 10) 4

51 (2n + 1)
+ (416n* + 83213 - 584n® + 168 #) cos (2n + 1)¢ 4
+ (16%% - 32n® + 4n* — 12n) cos (4n + 2)¢].
For the sums S; and |S,, there holds the identity
(3.5) 4S5, —3S, =1
For the sums of higher orders we have the identity
3.5)

i

[z Si — 8255+ 10S,] = 1 +M 3 4 cos (fm+1)t+ cos (4n+2) 1.

9(2n 4 1)*
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[

“ The  identity (3.5) was first given by A. H. TURECKI [7]. Welical-
culate S, and S, Following kIs-virTESI [3], we have, for a positive

integer
[ nn ]
21 +1

(37) (2% —I 1 ) Z l;znn(t - CO e + 2 2 C(2u+1)] m COS (271' + 1)

k=-—n

where the numbers C, ., are such that C;,, =C._jm j =1, mn

and satisfy

1 fm— 1) o
(38) Z C] mZJ — —f"”(l | [2n+1 " LU + 1.0 )4,‘

J== 1=0 (Hl 1%

Thus to calculate S, we need to calculate Cj,, only for j in multiples
of (2n + 1) from (3.8). For m =5,6

(3.9)

Wi !
(2n + 1)* L l}m = Cos A 2[Cany1s cOs (2 4 1)t + Cinyos cos (4n 4 2)¢],
L 5 &
(3.10)
(212 4 1) 2 Iin(t) = Cos 4 2[Canr1,6 cOS (21 4- 1)¢ + C4,,+2,6 cos (417 + 2)t].
k=—n

The numbers C4,,+25,_C2,,+15 and Cos are the coefficlents of Zin+2, 2+l
and Z,, respectively in the expansion (7) for m = 5. Thus’

C4n+z.s=;,[(9n+3)(9n+4)(9n+5)(9n+6) 5(7n+2)(Tn+3)(7Tn+4) (71 +8) +
+ 10(5% 4 1)(5n —}— 2)(5n + 3)(51; + 4) — 10(3n)(3n - 1)(8n + 2)(3n - 3)+
4-5(n — D nn + 1)(n + 2)] = ;11_1 (nt 4 2m3 — n? — 2n)

Cand 1,5:£ [(;71¢ 1-2) (71 14-8) (T +4) (TH+-5) = 5(5n+ 1) (Sn+2) (5n+-3) (Sn+4) 4
+ 10(3h)(3n + 1)(% + 2)(3n +8) — 10(z — 1) nfn + 1)(# +2)] =

(76n4 -+ 102113 -+ 10 1n~ _I_, 28n) '
Cos = 4ll (51t -+ 1)(5% + 2) (51 + 3)(5n + 4) —

— 5(3n) (3% + 1)(3n + 2)(3n + 3) + 10(n — 1) #(n + 1)(n - 2)] =
- 411 (2307 4+ 4601 + 370n2 - 140n - 24)
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Similarly the coefficients of Z#+2 Z+liand the constant 'term in’ (3.8)

for 'm-= 6 give:
Cingze = % [(10n + 3)(10% + 4)(10% 4- 5)(10% + 6)(10% + 7) —

— 6(8n'4 2)(8n -+ 8)(8ir + 4)(8n + 5)(8n - 6) +
1861 + 1)(61 + 2)(6n + 3)(61 + 4)(6n + 5) —
— 20(4n)(4n + 1)(4n + 2)(4n + 3)(4n + 4) +
+ 15(2n — 1)(20) (20 + 1)(2n + 2)(2n + 3)] —
' 2_2”'; L (16n8 + 32m 4 4n2 — 12 'n)."

Cavins = 1 [Bn + 281 + 3)Bn + 4)(En 4 5)(Sn -+ 6)

— 6(6n 4 1)(6n 4 2)(6% + 3)(61 - 4)(6n - 5) +
~+ 15(4m) (4 - 1)(dn + 2)(4n + 3)(4n + 4) —
— 20(2n — 1)(2n)(2n® 4 1)(2n + 2)(2n + 3)] =

- 2%1 (416m% - 83213 4 5842 - 168n) -

Ci = si, [(6% + 1)(65 - 2)(6n + 3)(61 4 4)(61 4 5)

— 68(dn) (40 + 1)(4n 4 2)(dn + 3){dn + 4)
+ 1520 — 1)(2n)(2n 4 1)(2n + 2)(2n L 3)] =

=20 (1056mt - 21120% + 1704n* + 684n 4 120)

51
Hence on simplifying the expressions for these numbers and putting in
(3.9) and (3.10) we get the required sums S5 and. Sg in the lemma.

. %4 The main lemma. An important property of the sum of the polyno-
mials v,(x) * which plays a vital role in these investigations, is contained
m the following lemma 2. We mention here that we have not been able
to find an identity similar to (3.6) of Tureckii in the powers of (%)
higher than 4 so as to have the identity

H

2 v(x) =1

k=0
as in the Kis-Vertesi operator.

i |
3 For typographical reasons we shall be writing % instead of kn later on.
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Lcemma 20 For —lg x<1,

[

(a) ?Om(x),_1 < l
(b) > ok(x) | < 3.
k=0

Proof. From (2.3), (2.5) and (3.6), we have

b2

Do) =Y we) =1 R D 3 Ly s (@0 b 1) Cos (40 £ 2)F]
k=0 k=—n 9(2n + 1)¢

from  which we at once have the part (a) of the lemma.
Further, on differentiation, we have

13

, N0 20m(n 4 1)[2sin (2n + 1)¢ — sin (dn + 2)1]
2 () = =

k=0 h=—n Sint 9(2n + 1)® - sin ¢

__ A0n(n + 1)(2n + Vsin (2n + 1)t _ 20n(n 4- 1(2n + 1)sin (4n 4 2)¢

9(2n 4+ 1) sin ¢ 9(2n |- 1)4sin ¢
Now using
(4.1) Isin #t] € njsin ¢, we have
SN
2 vh(x)| <3
k=0

5. Convergenee of  operaters V,,(f, x).

The following theorem gives the convergence behaviour of the opera-
tors V,, ([, x). :
THEOREM 2. Let f(x) € C'[—1,1], then for the operators V., (f,x), we

have
- ch 13
(5.1) W) = f@l< Lo (] r=01
nr ”
where o () 1s the modulus of continwity of f and ||.|| = max 1].] is
: —lsag

the uniform mnorm. )
For V,(f,x) a stronger estimate than (5.1) holds, namely, the following
theorem is valid.

) In the sequel we shall denote Cy, (Cy, . .. for eight arbitrary constants.
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rHEOREM 3. Let f(x) = C[—1,11, then for the operators Vol %), we
have,

n?

(5.2) Vaolf, %) — fl#)] < C wf(“/l ““Jr_)

and

\/1 — x? g1 \/1‘—,142 1
(5.3) |Vaolf, 2)|< C ( +;) _mf( , +_), —1g x< 1.
oy : \ : 1 \

(5.2) is the well-known inequality of A.F. Timan. By proving (5.3) we

are able to give a new proof jof R. M Trigub’s 1nequ'111ty through mter—

polation. 5

For Vu(f,®) the inequality ol A. F. llmdll does not appear to hold

However, a better local cstimate can be obtained but it is of no’ 1nterest

to us here, so we confine ourselves to' proving''only '(5.1) for'y =10
Proof of the theorem 2(r = 1). ()u account of (2.4) we have the

identity i ¢ b L) piad |t ‘

(54) Vulf, x)‘.;—if(x)=[f(x)%f(—l)—(x%1 F(=D)] iv —1]—

if i

LS ) — fm) — (5 — %) (] 08 = Do+ S

k=0
Now making use of the well-known relation
(5.5) flu) — fle) — (w —v) fv) = O(u — o] op(lu —ol)),
we have '

. 'bk( }Ji;l","

/
18=0

{211. Wt (nf»(x—f— )
which by virtue of the 1dent1ty in the part (a) of the lemma 2, gives

2C 8C 1
5.6) S| < For@ < Barl]).
n n
Replacing x by cos ¢ and x, ‘cot't, and using (2.5) we can write

Zln: }_/ [fcost

k=—un

f(cos' t,) — (cos t = Cos t)f (cos t;)] i, (1)

Deénote by #; the nearest node to 4, ie. lét

5.7 | o
(5.7) [t — ] AT
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Since the functions involved in the expression for 212 do not change

if we increase or decrease the numbers & in multiples of (21 -+ 1), we
have

jtn

(5.8 2_/ E f cos it) — f(cos t,) — (cos ¢ — cos &,)f (cost,)] w,(t).

h=f—n
Because of (5.5) and the ploperty of ~modulus of continuity, we have

C5 _ |cos { — cos tkl co,f(|’cos I — cos &) u,(t) <
k=f—n ‘ ‘ GT 2
1v|j+u ‘ S L LA
< C;’, (l)f'('—‘) Z n(cos t'— cos t,)? 4 |cos't — cos't, | i, (t) | <
”n ESj—n . LI m
< Cyop i) i\/n ‘4n sin? 2% 2 in ul 26, (2)
SR Y 2 i

which on using the estimate in part (a) of lemma 3 (§6), gives

B8k v aal. o 1211\,”- (i]

Thus (5.4), (3.6) and (5.9) prove theorem 2 for 7 = 1.
Proof of ‘theorem 3. On account of (2.4), we have

610 Valh, ) —f0) = ) — A=) — 1|

=32 1), — S0 0() = Do+ Do

The sum in absolute value is
01

s [ D] e et £ 0 € 4o

n?
Similar to the argumcn‘ts leading to (‘) 8) we have

]+”

Dl 2 [f(cos ) — f(cos £,) ] 1,(0)-

k=j—n

We shall now use the followmg well-known and easy to verify the relation

ijorff)

-+ [2%2 R/ 1) o) (~, .
r2 n?)

(5.12) o(|cos t — cos 4,]) < (211 sin .
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Hence we have

"EOZ <oy 'sin %J Li (214 sin £ % : maly ST 1) [uk(z‘)’ll +

=—pn

n

gum mf‘(,%i"{ E {2nzsm2 "+ l)luk()l}

k=—n |

again using, part (a) of lemma 3, we have Ay b
(5.13) |Z_OZ <C [wflsm ]+mf(aﬂ )

Thus from (5 10), (5.11) and (5.13), we have the first part of the theorem 3.
To prove the second. part of the theorem, we have from (2.4) on
differentiation

#

(5-14) - Vil ) =§§)<:f<-xk> =) vux);: |
~ S0 F ) 5 (A i) D B

¥=0
Now on account of the estimate’'in part (b) of the lemma 2, we have

12 mf(__\/] Al &1 -+ l)
(5.15) lEoz' 3 W)’ &1yl L)
\/1 — x? i
( 7 + n‘-’)

Further we have

" Jtn ' ul (1
2 ) = 1) 1oix) = 55 (flcos )~ f(cos 4140

Hence

IZOI (Jl _‘ xz) ' ]i‘ (Zn sin ot "l + 1) A )] +

sint g=_4u
H-#
1 J

+ W, ( )[ > (2112 sinz L + 1) uk(t)]

n2t | sing x5,
and using the estimates in'part (c) of lemma 3, we have
(5.16)

’ 7 \/ﬁ f ")f(
lzollsc7imf\( - +i) <2C7

n n2
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If fT—2< L, then we make use of part (b) of lemma 3, and we
n

have

Wl—a 1
(5.17) Zl < Cont oo (VL7 0 L 2C, S
7 e e
s ” Tn*

Thus from (5.15); (5.16) and (5.17), we get ‘the second part of the theo-

rem. o))

6. An auxillary lemma."
Lemma 3. For t. = [0, n], we have Jor p =0, 1, 2

jtn

(a) 20 sint Loty ) 1200
k=j5—n 2 np
i+n
(b) > sint L=ty ) 1707
Be=jon, 2 | np-1l
itn
1t — #) b 1707
b i
" (C) : k;néln« é smt S ff?‘“
Proof. We have
jtn it P g
6.0) 20 sin? LBy )] — sime £ =41 ‘f' s8] +k§3 sin? L=, 1)
| o
Now, from (2.3) and (4.3), we have
(6.2) mll< lk(t)
and
soplt =Gl 1 i
; pl — bl < ——— for k.
(6.3) §1n e @) < Y or %
Let us define
(6:4) S= @t 1) sin IA
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then, by using v x

It —t] < %_il_;l x
we have
(6.5) Is;l < 26 — 1,
where

G bkt s L F 20t )
Hence, on combining (6.1), (6.2), (6.3) and (6.5) we get
o+

~,
R

. t— ¢
sint L0 )<
h=j-n 2
z " Qo
67 P ' 67 I mi =) e
s = P + pz s 5 S
3 (2n + 1) 32n + NP1 (20 — 1)

120 1A
K — =01 2.
S forp =071,

which proves the part"(a). - ‘
Now differentiating the formula (2.2), we get

1 L 21 1
cos 2”: 5= sgn—’%'—' (b= ) cos = (¢ — 1)
l;(t) = 1 . —2“ 1 .
2 sin E (¢ —t) (272 4+ 1) sin® 2‘ (£—ity)

Hence,; we have, on using (6.4)
R Y ; g 1 i i

2n 41 1

2 sl

(6.9) THOIRS

|
’

Now making use of (2.3) after. differentiation and (6.3), we have
[ ol

J i+

= |6 — 2l » 160 nd 160 thlg

2 sinf lun(?)] < — = - = <
k=fgn 3 (2n 4+ 1) 3@2n + )P 25510 54

; k#j
. N A " ‘ K jif
-; P

< 1_69 nd 160 2 1 1707 o p=0 1,2

3 (2n 4 1P + 3@2n + NPT (2 — 1) T

from which we have (b).: 'y & .
In the similar fashion, we can prove (¢) if we make use of (4.1).
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