MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 7, Nº 2, 1978, pp. 135-139

ON THE METHOD OF THE CHORDS AND STEFFENSEN'S METHOD IN BOUNDED REGIONS IN BANACH SPACES

by M. BALÁZS (Cluj-Napoca)

Let be $F: X \rightarrow X$ an operator and the equation

$$(1) x = F(x),$$

where X is a Banach space. We note with x^* a fixed point of the operator F, which, evidently, is also a solution of the equation (1). In our paper [2] we have studied a class of iterative methods for solving equation (1), in which the sequence (x_n) , converging to x^* is given by the following formula:

(2)
$$x_{n+1} = x_n - \{I - [u_n, v_n; F]\}^{-1}[x_n - F(x_n)]$$

 $(n=0,\ 1,\ 2,\ \ldots)$, where $[u,\ v\ ;\ F]$ is a divided difference of the operator F in the point $(u,\ v)\in X\times X$, I denotes the identity operator, an x_0 and the sequences (u_n) , (v_n) are suitably chosen. In the quoted paper [2] the convergence of the sequence (x_n) has been proved (see Theorems 1 and 3) in case when the divided difference $[\cdot,\cdot;F]$ was uniformly bounded, respectively verified a Lipschitz-type condition in the entire space X. It is known that the same type of results can be established if we assume that the conditions are verified only in a ball which will contain x^* and the sequences (x_n) , (y_n) . In this paper we shall give and proof theorems, analogous to the theorems 1 and 3 from the paper [2], when the conditions of these theorems are satisfied only in a bounded region from X.

THEOREM 1. If

(i.1)
$$||[u, v; F]|| \leq \alpha < \frac{1}{3}$$

for all u, v from the ball

$$B_{\alpha} = \left\{ x : ||x - x_0|| \leqslant \frac{1 + \alpha}{(1 - \alpha)^2} ||x_0 - F(x_0)|| \right\},\,$$

then the sequence (x_n) defined by the formula (2) converges to the unique solution x^* of the equation (1) from the ball B_{α} for each sequence (u_n) and (v_n) from the ball B_{α} and the rate of convergence of the sequence (x_n) is given by the following inequality:

$$||x^* - x_n|| \leq \left(\frac{2\alpha}{1-\alpha}\right)^n \frac{||x_0 - F(x_0)||}{1-\alpha}.$$

Proof. The existence and the unicity of x^* in B_{α} results from the contraction mapping principle. Really, from the condition (i.1) for any $x, y \in B_{\alpha}$ we have

 $||F(x) - F(y)|| = ||[x, y; F](x - y)|| \le ||[x, y; F]|| \cdot ||x - y|| \le \alpha ||x - y||$. According to the same principle it results

(3)
$$||x^* - x_0|| \le \frac{||x_0 - F(x_0)||}{1 - \alpha}.$$

From (i.1) results that for any u_n , $v_n \in B_\alpha$ the operator $I - [u_n, v_n; F]$ has an inverse and

(4)
$$||\{I - [u_n, v_n; F]\}^{-1}|| \leq \frac{1}{1 - \alpha} .$$

Form (2) when n = 0, by (4) results

$$||x_1 - x_0|| \leq \frac{||x_0 - F(x_0)||}{1 - \alpha} < \frac{1 + \alpha}{(1 - \alpha)^2} ||x_0 - F(x_0)||,$$

and thus $x_1 \in B_{\alpha}$.

Let's assume that $x_k \in B_\alpha$ for any $k \le m$, where m > 1 is a positive integer. From (2) using the equality $x^* = F(x^*)$ and the evident identity

$$y - \{I - [u_k, v_k; F]\}^{-1} y = -\{I - [u_k, v_k; F]\}^{-1}[u_k, v_k; F]y$$

 $(y \in X)$ results

(5)
$$x_{k+1}-x^* = \{I - [u_k, v_k; F]\}^{-1}\{F(x_k) - F(x^*) - [u_k, v_k; F](x_k - x^*)\}.$$

Because α^* , $\alpha_k \in B_{\alpha}(k \leq m)$ we obtain

$$||F(x_k) - F(x^*)|| \le ||[x_k, x^*; F]|| \cdot ||x_k - x^*|| \le \alpha ||x_k - x^*||$$

and so

(6)
$$||x_{k+1} - x^*|| \le \frac{1}{1-\alpha} (\alpha ||x_k - x^*|| + \alpha ||x_k - x^*||) = \frac{2\alpha}{1-\alpha} ||x_k - x^*||.$$

If we put k = 0, 1, ..., m in the inequality (6) and we multiply the inequalities obtained this way, we come to

$$||x_{m+1} - x^*|| \le \left(\frac{2\alpha}{1-\alpha}\right)^{m+1} ||x_0 - x^*||,$$

whence, using (3), results

(7)
$$||x_{m+1} - x^*|| \le \left| \frac{2\alpha}{1-\alpha} \right|^{m+1} \frac{||x_0 - F(x_0)||}{1-\alpha}$$

and so (j.1) is true for n = m + 1.

Applying the triangle inequality and using (3) and (7) we obtain

$$\begin{split} ||x_{m+1} - x_0|| &\leq ||x_{m+1} - x^*|| + ||x^* - x_0|| \leq \frac{||x_0 - F(x_0)||}{1 - \alpha} \left[1 + \left(\frac{2\alpha}{1 - \alpha} \right)^{m+1} \right] \leq \\ &\leq \frac{||x_0 - F(x_0)||}{1 - \alpha} \left(1 + \frac{2\alpha}{1 - \alpha} \right) = \frac{1 + \alpha}{(1 - \alpha)^2} ||x_0 - F(x_0)||, \end{split}$$

which shows that $x_{m+1} \in B_{\alpha}$. So, on the basses of the mathematical induction, $x_n \in B_{\alpha}$ for each positive integer n. The mathematical induction together with (7) also leads us to (j.1) for any positive integer n.

The convergence of the sequence (x_n) to x^* is guaranteed by the condition (i.1).

THEOREM 2. If for any x, u, v from the ball

$$B = \left\{ x : ||x - x_0|| \le \frac{2||x_0 - F(x_0)||}{1 - \alpha} \right\}$$

the following conditions are verified:

$$||[u, v; F]|| \leq \alpha < 1$$

(ii.2)
$$||[x, u; F] - [x, v; F]|| \le K ||u - v||$$

and the equality

$$h_0 = \frac{K\alpha}{(1-\alpha)^2} ||x_0 - F(x_0)|| < 1$$

is true, then Steffensen's method, given by

(8)
$$x_{n+1} = x_n - \{I - [x_n, F(x_n); F]\}^{-1}[x_n - F(x_n)]$$

converges to the unique solution x^* , from the ball B, of the equation (1) and the rate of convergence is given by the following inequality:

$$||x_n - x^*|| \le (h_0)^{2^n - 1} \frac{||x_0 - F(x_0)||}{1 - \alpha}.$$

4

Proof. The existence and uniqueness of the solution x^* in B results from the contraction mapping principle.

We shall proof that the terms of the sequences (x_n) and $(F(x_n))$ belong to the ball B. Evidently $F(x_0) \in B$.

Thus $||[x_0, F(x_0); F]|| \le \alpha < 1$ and so the inverse of the operator $I - [x_0, F(x_0); F]$ exists and we have

$$||[I - [x_0, F(x_0); F]]^{-1}|| \le \frac{1}{1-\sigma}$$

From (8) when n = 0 we get

$$||x_1-x_0|| \leq \frac{1}{1-\alpha} ||x_0-F(x_0)|| \leq \frac{2||x_0-F(x_0)||}{1-\alpha}$$

therefore $x_1 \in B$.

Let's assume that $x_k \in B$, $F(x_{k-1}) \in B$ for any $k \le m$, where m > 1 is a positive integer. From (3) results that $x^* \in B$ too. Thus we have

(9)
$$||x^* - F(x_m)|| = ||F(x^*) - F(x_m)|| \le ||[x^*, x_m; F]|| \cdot ||x^* - x_m|| \le \alpha ||x^* - x_m||.$$

From (5) when $u_k = x_k$ and $v_k = F(x_k)$ follows

$$x_{k+1}-x^{\star}=\{I-[x_k,F(x_k);F]\}^{-1}\{F(x_k)-F(x^{\star})-[x_k,F(x_k);F](x_k-x^{\star})$$
 which by (i.2), (ii.2) and (9), leads us to

$$(10) ||x_{k+1} - x^*|| \leq \frac{1}{1-\alpha} ||[x_k, x^*; F] - [x_k, F(x_k); F]|| \cdot ||x_k - x^*|| \leq \frac{K}{1-\alpha} ||x^* - F(x_k)|| \cdot ||x_k - x^*|| \leq \frac{K\alpha}{1-\alpha} ||x^* - x_k||^2.$$

(10) ensures the truth of (j.2) for each $k \le n + 1$. The inequality (9), using (j.2) gives

(11)
$$||x^* - F(x_m)|| \leq \alpha (h_0)^{2^m - 1} \frac{||x_0 - F(x_0)||}{1 - \alpha}.$$

Applying the triangle inequality, by (3) and (11) we obtain

$$\begin{split} ||x_0 - F(x_{\rm m})|| & \leq ||x_0 - x^{\star}|| + ||x^{\star} - F(x_{\rm m})|| \leq \frac{||x_0 - F(x_0)||}{1 - \alpha} \left[1 + \alpha(h_0)^{2^m - 1}\right] < \\ & \leq \frac{2||x_0 - F(x_0)||}{1 - \alpha} \,, \end{split}$$

which means that $F(x_{-}) \in B$.

Further we have

$$\begin{aligned} ||x_{m+1} - x_0|| &\leq ||x_{m+1} - x^*|| + ||x^* - x_0|| &\leq \frac{||x_0 - F(x_0)||}{1 - \alpha} \left[1 + (h_0)^{2^{m+1} - 1} \right] < \\ &\leq \frac{2||(x_0 - F(x_0))||}{1 - \alpha}, \end{aligned}$$

which resulted using (3) and (10) for k = m. So $x_{m+1} \in B$. From the principle of the mathematical induction we obtain that x_n and $F(x_n)$ belong to B for each n. Because of the same principle (j.2) is true for any positive integer n.

The convergence of the sequence (x_n) to x^* is guaranteed by the condition $h_0 < 1$.

REFERENCES

 Balázs, M., Contribution to the Study of Solving the Equations in Banach Spaces. Doctor Thesis, Cluj-Napoca (1969).

[2] Balázs, M., Notes on the Convergence of the Method of Chords and of Steffensen's Method in Banach Spaces (in press).

[3] Rall, I. B., Convergence of Stirring's Method in Banach Spaces. Aequationes Mathematicae, 12, 1. 12-20 (1975).

[4] Sergeev, A. S., On the Method of the Chords (Russian). Sibirs. Mat. J. II, 2, 282-289 (1961).

[5] U1'm, S., On Algorithm for Steffensen's Generalized Method (Russian). Izv. Acad. Nauk Estonskoi S.S.R., 1, 24-30 (1963).

Received 2.VI.1978.

Universitatea Babeș — Bolyai Facultatea de matematică, Str. Kogălniceanu 1 3400 Cluj - Napoca