MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 7, Nº 2, 1978, pp. 141-145

ANTIPROXIMINAL SETS IN BANACH SPACES OF c₀ — TYPE

S. COBZAŞ (Cluj-Napoca)

Let X be a normed linear space, M a nonvoid subset of X and xan element of X. Put $d(x, M) = \inf \{ ||x - y|| : y \in M \}$ and $P_M(x) = \{ y \in M : ||x - y|| = d(x, M) \}$. The set M is called proximinal if $P_M(x) \neq \emptyset$, for all $x \in X$, and antiproximinal if $P_M(x) = \emptyset$, for all $x \in X$. Following V. KLEE [6], a normed linear space is called of $N_1 - type$ if contains a nonvoid closed convex antiproximinal set and of N_2 - type, if contains a nonvoid closed bounded convex antiproximinal set. Evidently, $N_2 \subset N_1$ and as was observed by v. KLEE [6], a Banach space is of N_1 — type if and only if is non-reflexive. The first example of a Banach space of N_2 — type was given by M. EDELSTEIN and A. C. THOMPSON [5]: the apce c_0 is of N_2 — type. In [2] it was shown that the space c is also of N_2 — type. These two results were extended in [3] in the following way: If S is a compact Hausdorff space such that C(S) is isomorphic to c_0 and if J is an infinite dimensional closed ideal in C(S), then J is of N_2 — type. (Here C(S) denotes, as usually, the Banach space of all real-valued continuous functions on the Hausdorff compact S, with the supremum norm). In all of these cases it was shown that the considered spaces contain symmetric antiproximinal convex bodies. (By a convex body we mean a bounded closed convex set with nonvoid interior). Concerning the space $L_1(S, \alpha, \mu)$ it was proved that if (S, α, μ) is a countably additive positive measure space, containing at least one atom, then $L_1(S, \mathcal{A}, \mu)$ is not of N_2 — type [1].

In this Note we shall give a slight extension of the result from [5].

Let X_i , $i \in I$, be a family of Banach spaces. Denote by $\left(\sum_i X_i\right)_{i,i}$ the Banach space of all functions $x: I \to \bigcup_i X_i$, such that $x(i) \in X_i$,

for all $i \in I$ and the set $\{i \in I : || x(i) || > \epsilon\}$ is finite, for all $\epsilon > 0$. The norm on $(\sum_i X_i)_{\epsilon_i}$ is given by

(1)
$$||x|| = \sup \{||x(i)|| : i \in I\} = \max \{||x(i)|| : i \in I\}.$$

Denote also by $\left(\sum_{i}X_{i}\right)_{l_{i}}$ the Banach space of all functions $x:I\rightarrow\bigcup_{i}X_{i}$, such that $x(i)\in X_{i}$, for all $i\in I$, and $\sum_{i}\mid\mid x(i)\mid\mid<\infty$. The norm on $\left(\sum_{i}X_{i}\right)_{l_{i}}$ is given by

(2)
$$|x|| = \sum_{i} ||x(i)||, x \in \left(\sum_{i} X_{i}\right)_{l_{1}}$$

If X is a Banach space, denote by $c_0(X)$ and $l_1(X)$ the spaces $\left|\sum_{i\in\mathbb{N}}X_i\right|_{c_i}$ respectively $\left(\sum_{i\in\mathbb{N}}X_i\right)_{l_i}$, where $X_i=X$ for all $i\in\mathbb{N}$. The value of a function x in one of these spaces at $i\in I$, will be denoted also by x_i . If M is a convex subset of a locally convex space X, we say that a functional $f\in X'$ (X' — the conjugate of X) supports the set M if there exists $x_0\in M$ such that $f(x_0)=\sup f(M)$ or $f(x_0)=\inf f(M)$. Denote by \$(M) the set of all support functionals of the set M.

In the sequel we shall need the following two results from [5]: Lemma A. A closed convex subset C of a normed linear space X is antiproximinal if and only if

$$\$(B) \cap \$(C) = \{0\},\$$

where B denotes the closed unit ball of X.

Lemma B. If X, Y are Banach spaces, C a convex subset of X and $A: X \rightarrow Y$ is an isomorphism, then

$$S(C) = A'S(A(C)),$$

where $A': Y' \rightarrow X'$ denotes the conjugate operator of A. We can now state the result of this Note:

PROPOSITION The space $X = \left(\sum_{i} X_{i}\right)_{c_{i}}$ is of N_{2} — type for every infinite set I and every family X_{i} , $X_{i} \neq \{0\}$, $i \in I$, of Banach spaces. More exactly, X contains a symmetric antiproximinal convex body.

Proof. Firstly, observe that $(\sum_{i} X_{i}^{!})_{c_{\bullet}}$ is isometrically isomorphic to $c_{0}\left(|\sum_{i} X_{i}|_{c_{\bullet}}\right)$, for every infinite set I and every family $\{X_{i}: i \in I\}$ of Banach spaces. Indeed, since the set I is infinite it can be written as $I_{n} = \bigcup I_{n}$, where $I_{n} \cap I_{m} = \emptyset$, for $m \neq n$, and card $(I_{n}) = \text{card }(I)$, for

all $n \in \mathbb{N}$. Let $\lambda_n : I_n \to I$, $n \in \mathbb{N}$, be some bijections. For $\xi \in c_0\left(\left(\sum_i X_i\right)_{c_0}\right)$ denote by $\xi_n \in \left(\sum_i X_i\right)_{c_0}$ the value of the function ξ at $n \in \mathbb{N}$, and by $\xi_n(i)$, the value of the function ξ_n at $i \in I$. Then an isometry $T : c_0\left(\left(\sum_i X_i\right)\right)_{c_0} \to \left(\sum_i X_i\right)_{c_0}$ is given by

$$(T\xi)(i) = \xi_n(\lambda_n(i)),$$

for all $i \in I_n$, $n \in \mathbb{N}$ and $\xi \in c_0 \left(\left(\sum_i X_i \right)_{c_0} \right)$. The converse of T is given by

$$(T^{-1}x)_n(i) = x(\lambda_n^{-1}(i)),$$

for all $i \in I_n$, $n \in \mathbb{N}$ and $x \in \left(\sum_i X_i\right)_{c_0}$. Therefore it is sufficient to prove the Proposition in the case of a space $c_0(X)$, where X is a Banach space, $X \neq \{0\}$.

Suppose then, that X is a Banach space, $X \neq \{0\}$, and define A:

(3)
$$Ax(i) = x(i) + \sum_{k=1}^{\infty} 2^{-(k+1)} x(\sigma_i(k)),$$

for $i \in \mathbb{N}$ and $x \in c_0(X)$, where $\sigma_n : \mathbb{N} \to \mathbb{N}$ is an application given by

(4)
$$\sigma_n(k) = 2^{n-1}(2k-1), k \in \mathbb{N},$$

for all $n \in \mathbb{N}$. Since the space X is complete and $||x(i)|| + \sum_{k=1}^{\infty} 2^{-(k+1)}$ $||x(\sigma_i(k))|| < \infty$, it follows that, for all $x \in c_0(X)$ and $i \in \mathbb{N}$, there exists $Ax(i) \in X$, such that (3) holds. Obviously, $\lim_{i \to \infty} Ax(i) = 0$, i.e. $Ax \in c_0(X)$ and the operator A is linear. The conjugate of $c_0(X)$ is the space $l_1(X')$, the duality between $c_0(X)$ and $l_1(X')$ being given by

$$f(x) = \sum_{i=1}^{\infty} f_i(x(i)),$$

for $x \in c_0(X)$ and $f \in l_1(X')$ (see [4]). Let $S_{X'} = \{x' \in X' : ||x'|| = 1\}$ be the unit sphere of X'. Define the isometric injections $\varphi_i : X \to c_0(X)$ and $\psi_i : X' \to l_1(X')$, by $\varphi_i x(j) = \delta_{ij} x$, respectively $(\psi_i x') = \delta_{ij} x'$, for all $i,j \in \mathbb{N}$, $x \in X$ and $x' \in X'$, where δ_{ij} denotes the Kronecker symbol. Let

$$B_1 = \{x \in c_0(X) : |\psi_i x'(Ax)| \leq 1 \text{ for all } x' \in S_{X'}, \text{ and } i \in \mathbb{N}\}.$$

Evidenthly, B_1 is a symmetric closed convex set set. Since, for $||x|| \le 2/3$

$$\begin{aligned} |(\psi_{i}x')Ax| &= |x'(Ax(i))| \leqslant |x'(x(i))| + \sum_{k=1}^{\infty} 2^{-(k+1)}|x'(x(\sigma_{i}(k)))| \leqslant ||x|| + \\ &+ 2^{-1}||x|| = (3/2)||x|| \leqslant 1, \end{aligned}$$

for all $x' \in S_{X'}$, and $i \in \mathbb{N}$, it follows that 0 is an interior point of B_1 . We shall show that the set B_1 is also bounded. Suppose $x \in c_0(X)$ and ||x|| > 2. Let $i_0 \in \mathbb{N}$ be such that $||x(i_0)|| = ||x||$ and let $x' \in S_X$ be such that $x'(x(i_0)) = ||x(i_0)||$. Then

$$\psi_{i_{\bullet}}x'(Ax) = x'(x(i_{0})) + \sum_{k=1}^{\infty} 2^{-(k+1)} x'(x(\sigma_{i_{\bullet}}(k))) = ||x(i_{0})|| + \sum_{k=1}^{\infty} 2^{-(k+1)}x'(x(\sigma_{i_{\bullet}}(k))) \ge ||x|| - 2^{-1} ||x|| > 1,$$

so that $x \notin B_1$, and therefore $||x|| \le 2$ for all $x \in B_1$. Denoting by B the closed unit ball of $c_0(X)$ and, taking into account that, for all $x \in X$, $||x|| = \sup \{x'(x) : x' \in S_{x'}\}$ we get

$$B_{1} = \{x \in c_{0}(X) : |\psi_{i}x'(Ax)| \leq 1, x' \in S_{X'}, i \in \mathbb{N}\} =$$

$$= \{x \in c_{0}(X) : |x'(Ax(i))| \leq 1, x' \in S_{X'}, i \in \mathbb{N}\} =$$

$$= \{x \in c_{0}(X) : ||Ax(i)|| \leq 1, i \in \mathbb{N}\} =$$

$$= \{x \in c_{0}(X) : ||Ax|| \leq 1\} = A^{-1}(B).$$

The equality $B_1 = A^{-1}(B)$ shows that A is an isomorphism of $c_0(X)$ onto $c_0(X)$ and, by Lemma B.

$$\$(B_1) = A'\$(B).$$

Denoting by B_X the closed unit ball of X, observe that $f \in l_1(X')$ supports the unit ball of $c_0(X)$ if and only if there exists $n \in \mathbb{N}$ such that $f_i = 0$ for i > n and $f_i \in \mathcal{S}(B_X)$, for i = 1, 2, ..., n. Now, if f = $=(f_1,\ldots,f_n,0,\ldots)\neq 0$ is a support functional of the unit ball of $c_0(X)$,

$$A'f(x) = f(Ax) = \sum_{i=1}^{n} f_i(Ax(i)) =$$

$$= \sum_{i=1}^{n} \left(f_i(x(i)) + \sum_{k=1}^{\infty} 2^{-(k+1)} f_i x(\sigma_i(k)) \right),$$

which shows that the set $\{i \in \mathbb{N} : (A'f)_i \neq 0\}$ is infinite and consequently $A'f \notin S(B)$. Taking into account (5), it follows $S(B) \cap S(B_1) = \{0\}$ and therefore, by Lemma A, the set B_1 is antiproximinal, which ends the proof of the Proposition.

REFERENCES

- [1] Cobzas, S., Antiproximinal sets in some Banach spaces, Math. Balkanica 4, 79-82, (1974). Convex antiproximinal sets in the spaces co and c, Mat. Zametki (Moscow) 17,
- 449-457, (1975). (in Russian). , Antiproximinal sels in Banach spaces of continuous functions, Revue d'Analyse
- Numérique et de la Théorie de l'Approximation 5, 127-143, (1976). [4] Day, M. M., Normed linear spaces, Springer V., Berlin-Göttingen (1958).
- [5] Edelstein, M., and Thompson A. C., Some results on nearest points and support
- properties of convex sets in co, Pacific J. Math. 40, 553-560, (1972). [6] Klee, V., Pemarks on nearest points in normed linear spaces, Proc. Colloq. Convexity, Copenhagen 1965, Copenhagen 1967, 168-176.

Received 4.VI.1978

University Babeș - Bolyai Faculty of Mathematics Cluj-Napoca