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I. In [1] was introduced the two-dimensional monospline, namely ;
U I = {(x;, y)I0< %< ... <x,<1; 0<y,< ... <9y,< 1} and S
is a two-dimensional spline function of the degree (r — 1, s — 1) with
deficiency of order (p, v) and with the knots (%;, y;) = II, then the func-
tion

(L.1) M(x, y) = 2L 4 S(x, )

yls!

is called a two-dimensional monospline of the degree (r, s) with deficiency
of order (w, v) and with the knots (x,, y;) € . The set of these func-
tions was denoted by Mys(m, m, @, v) or M,

Furthermore, in [1] was considered the problem to find the mono-
spline M = 9N, (m, n, u, v) for which

M| |ypy = min || M]|rm),

Mys

where D = {0 < x, ¥ < 1}, and this problem was solved in the case X o=
=y,=0 %x,=y,=1and p=¢r—1, v=3s— 1.

i Now, let mfs(m, n, ¥ — 1, s — 1) be the set of those monosplines
from o, (m, n, r — 1, s — 1) for which

(1.2) MP0a, b) =0, M®%a,y) =0, MO (x, b) =0, (a, b =0,1;
$p=0...,r—1;,¢=0,..., s— 1).
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One observes that the conditions (1,2) are satisfied if and only if

mn r—1,5s—1

x—x)0 (v — y,)¢
Mo(x, y) =22 ofp L2208 0 =2y +
risl  {j=0 pa=o0 7! q!
w1 n s—1
¥ (x - x.b)f_ x7 q (J’ —yj)i
A Oy ————— + — P’
+s|§§;’\0 Y +rl;;6420ﬁ"1 q!
and
mn r—1,s—1
) ; ¥ — x.\P (_‘V -y )‘1
13 T (DPQ( 1)+ J i
( ) 17:10 {;f.;;/‘O K f)l q'
N ) N~ (Y, % S [, 1]
A af; i)+ B‘Z ( e ')+ G
f?:(/)p:o Pl b= 7 q! yoe v 1]
NS e
Ois i ’
iZ0p=0 P! vl
is_l s ) St o S e 11
=TT g .t v < b 1]

for each M° < §n(m, n, r — 1, s —1).

In this paper one considers the problem to find the monospline M0 =
e @lfs(m, #n, ¥ — 1, s — 1) which is of least deviation from zero in the
square mean, on D.

The solution of this minimization problem is given by:

THEOREM 1. If

1) m, n, », s arve given natural numbers,

2) Ny and &NS are respectively the set of one-dimensional monosplines
of the degree v with deficiency of order v — 1 and with the knots {x;} and
the set of one-dimensional monosplines of the degree s with deviciency of
order s — 1 and with the knots {y;}, which satisfy the conditions

M(IP)(O) —_ Mg[’)(l) — O, (j) = O, e, ¥V — 1), V]‘l1 = m(r)
MPO) = MP(1) =0, (=0, ..., s— 1), VM, < o}

3) m e m? and M = e are respectively the monospines which are
of least deviation from zero in the square mean, on [0,1], then there exists
a unique monospline M° = 805, which is of least deviation Jrom zero in
square mean, on D, namely

Mo(x, y) = M(x) MY(y)

and
7ls!

Moy = —B g,
[ M°||L,p) @+ 0@ 1) P
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where

- 1 1

| 7 F— M= Ry —— s —_
2V + mv 2 2V + n /291

Proof. It is known from [4] that in the set of the polynomials of
the from

P

s—1 r—1,s—-1

r—1
(14)  Pu(x,3) = 2y + 27 3 a4,y +1; psx? + D0 apgatyt

7=0 7, 2=0

the unique polynomial which is of least deviation from zero, on [a — b <
Sx¥<a+h; b—g<y<b4g] is

(L5) Pom ) = We'X, (*2) %, 2=2).
4 4

where X, is the Legendre polynominal of the degree # havind the coef-
ficient of %" equal with 1.

Thus, the proof proceeds by establishing the monospline M, = 9,
for which the integral

11
J =\ 04o(x, 9) 2 dxdy
00
takes the minimum value. This integral can he written
m+1, n+1 i yj
(1.6) J= V13w 5T axay,
#720
Fi—1 Y1

where x_, =1y | =0, Xmy1 = Yup1 = 1 and

0 arys | A Y — 2P (v — )
(1.7) Mi(x,y) = + > ot =@t v — 5 4
slr! EI=0  pig=0 pl q!
i—1 r—1 f—1s5—1
¥ 2 — xp)? ” —
yE Z/\ Oﬁfx( ) + 7 8 (y — w9
sl &=04=0 P! 17=04=0 g!

Using the notations

bq Pq
o O o, b o8h 8
T e ) o T e =
?lg! rist  pl vl gl sl

it follows that

1
M(%, y) =— Ni(#, 3),

risl
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where
i—1,§—1y—1,5—1

Ni(x, y) = 'y + D3

k, 1=0 b, 7=0

(1.8) O (v — m)?(y — )7 -+

i—1 =1 jls—1
T 5202 el — w) Sy — ).
=00 1770 7=0
From (1.6) it follows
# v;
, 1 m+1, n+1 . . .
(1.9) J = Do I Iy = S S [Nig(x, 9)]* dxdy.
(rhash: i 720 oty 5

One observes that the intergral J takes its minimun value if and

only if each of the integrals I take the minimum value. But N3, (i =
=1, ..., m; j=1, ..., n) is a polynomial of the from (1.4). It fol-
lows that the integral I; takes its minimum value only if

0 o r.s X — a; 3 — by / i
(1.10) Nix, ) = HgX, (7 X | r ). (#) = Dy
where Dy = {%,_, < x< x;; ¥j_1< ¥ < ¥} and a; = e i

i — Fi _ Yty _ YT e
— b=, g =

2 ’ 2 2

Assuming that the knots (x,, v;) are fiexd and taking into account that

ain el
| Xitm)ax = 0B
i (2n -1 1) [(2u) 1]t ’

a—h

we obtain
= (r (s 1) . A

1.11 I = X, — )2y, — oy )B
LI = e e Y by = 5=
=1, ..., m; =1, ..., #n).
( 7

From (1.3) it follows that

(1'12) N?j(x) y) o N?i(x) Ngj(y)J (x:y) € Dy U Dt’.ﬂ+1 U DOJ' U Dm+1,f’
¢=01 ..., m+1;, =0, 1, ..., n4 1), where
i—1 r—1
Nig(x) = »" +;§Y§s(x — )?, Niwpa(x) = (v — 1)
j—ls—1
(L13)  Nyjlx) = 5" + 2, 20 8y = 30)"s Nawnaly) = (v — 1)°
—0q=
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From (1.9) and (1.11), taking into account that in the set of the
from (1.13) the unique polynomials which, on [x,_;, ;] respectively
[¥i-1, ¥;], are of least deviation from zcro in square mean, are the
7Y ”f) it

z )

)

corresponding Legendre polynomials ALX, (x — a" and ngsl
hy
follows that 1

j-

1 2r 41 () 5 Y |
DAs V227 + 1)(2s 4~ 1) [M * [(@n']2i=1 B = %) i

1__ - 2r+1 . 2s-+1 (S!)4 - _4 . 2s . A 5
+ (1 — 2,) ] [yo +—-—[(23)!]2; (y —yi-1)®+ (1 — )%+,

Now we shall minimize the function J with regard to the parameters
%;, ¥ It is easy to see that J takes its minimum value only when

(1.14) Zo= oV 2 =% +ih (G=1, ... m)
Fo=1VE0 gi=904jg G=1. ..., n)
where
(1.15) h=poV(2), g=1v(2s]
and
cTF o s e 2 2s
(1.16) 2113 J= (2r 4+ 1)(2s + 1)

Using again the identities (1.10), we shall dctermine the parameters
0. In the same way as in [1] we get

off = olBl, wh = al, BL =8
where
r—p rp 2r—p)
117 P74 == I —1 ’*pX(P) [ 121 1 1 2
(1.17) w = — l( YT (1) [(29) 1] . --m!(’ )
— 1t _
= (= 1) ' 1 hr—ﬁX(’P)(l)' (i =1,  m—1)
v!
W= (=1, (p=0, 1, ..., r—1),
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and
s—q =1 2(s—q)
Bf =1 {(-1)“"?{(1)[(28)‘] ¥ = (sh) 2 ]
sl (s—g)!
(118 E = A, (=1, L, e
B”‘_( )sq Iﬁol ( :0, 1: ’ 9_1)

From (1.8) it follows that

ﬂ?,(x [x’+2i5f(x—xk [)ﬁ +j IS_IE?(y_f’l) .

A== pa==0

Thus the theorem is proved.
2. Tet us consider the problem to approximate the intergal
11

I = SSf(x, y)dxdy

00

by a linear functional of the form

2 2 A f(P ? nl yj)
5, =09, ¢=0
where A¥, x, Y are real parameters satisfying the conditions :
O< 2y <. <2,<1, 0<y,< ... <y,< L
Let M = $R... Because M™9 — 1, we have
11
S SM' 9 (%, ¥) f(x, 3) dxdv,
00
or
YooY
", 1 (" S)
(2.1) I=73 S S Mg "(x, y) f(x, y)dxdy,
"]=O‘t 1Y5-1

where Mj; is a polynomial of the form (L.7). If we apply the general
formula for integration by parts it follows that

1
! m,h r—1, 51

(2.2) SSf(x. y)dxdy = 3= S ()P [MO~p-ts—a1(x, 0y, — 0) —

2% 6 J=0 p g=0
= MUh b, 40, 5y — 0) — Me—p-smi-N{x, — 0, , 1 0)
+ MOl 0,y 4 0)1f 0, ) + R(/),
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where

11
(2.3) R = (=1 ({ M09z, 3) o 0z, y)axdy +

00

o_,—..—

1
SM(' O (2,9)f0.9(x, y)dxdy —
0

11
— (1) SSM %, )09 (%, ) dxdy.
00

Thus we obtain a cubature formula with the coefficients
(2.4) Aff = (1P [ gy )
= MO (5, 0, gy — 0) — MU=p-be-a=(s, — 0, 5, 4.0) 4
- MU=#=h0(, 0, ;4 0)]

and with the remainder (2.3).
formulas by &,

Assuming that /"Ny <
< P,, we obtain

We shal denote the set of these cubature

Pro, 1J@Neymy < P and || f% 9], <

1

(2.5) [R(f)| < P, (S§ (M09 (%, 3 ]dedv) +

11

+ Py, (SS (MO (x, y)]2 d:\:a’.y)1 -+ P, (SHS [M(x, v ]zdxdy)

One considers the following problem: if m, #, » and s are given
natural numbers, determine F = &, for which the second member of
(2.5), where P,o, P,, P, are given real numbers, takes its minimum
value,

We observe that the solution of this problem corresponds to the moiio-
spline M = 9, for which the integrals

1

1 1
S (M9 (x, y) Pdxdy, T,y — S S [M.0 (x,9) Edxdy
0 00

gl

oL’\v—-

(2.6)

(M(x, y) Pdxdy

Dy =

take the minimum valye,
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Taking into account that

moor—1
MO (g, y) =2 355> g b M, ()
7! T=0 p—0
& #n os—1 y Y
Mooy, g) =2 55 g OmIl gy
st 7=0q=0 q!

it follows (see theorem 1) that the integrals (2.6) take the minimum
value only if:

M(xy) = Ml(x) ) 1172(}’)

where M, and M, are the one-dimensional monosplines of the degree #
respectively s which, on [0,1], are of least deviation from zero in the
square mean. These monosplines are defined by the values (1.14) respec-

tively (1.17) — (1.18) of the parameters %;, ¥; and o, @Y.

From (2.4) onc obtains

(2.7) A = (—1) o

-4 Bf

pPrg—r—p—l—5—g—1 (3 =), sy T8RS P:O, g B == 1}
' $=0; vy W G==0) iy Fem )

where % and Bj are given by (1.17) respectively (1.18).
Also, from (1.16) and (2.5) it follows that

s! vis|

(2.8) IR(f)] < N Wierarm e

7..8

P

P'/Lr P‘s : Pﬂ
N 0)\/57—’_—19—,_ 0\/2$+17)+ L

Thus we proved the following theorem :

THEOREM 2. If m, n, r and s arc given natural nwmbers, then in the
set Iy, there exists a umique cubatuve formula for which the right member
of the inequality (2.5) lakes ils minimum wvalue. The coefficients of Lhis
Jormula are given by (2.7), the coordinate of knots have the expresions (1.14)
and the remainder estimation is given by (2.8).
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