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1. Introduetion

Many methods exist for the evaluation of definite integrals. In a
problem in which the integrand function is analytic and can by readily
cvaluated at points (other than singularities) in the complex plane, there
Is often scope for reformulating the problem in a manner to take advan-
tage of there circumstances, Some of the possible approaches are des-
cribed in ABRAMOWITZ [1] (reprinted in DAVIES and RABINOWITZ [2]) and
in smrrn and LyNESS [7]). In this paper we describe three other useful
transformations of the same nature. -

One very straightforward approach to numerical (uadrature on a
finite interval is described in [6]. In its complete form this consists in
determining the Taylor coefficients of the integrand function and inte-
grating the Taylor series term by term. The Taylor coefficients are deter-
mined by discretising the Cauchy integral representation of the derivative,.
The advantages of this approach include its stability, the easy with which
convergence may be observed or the error estimated, the iterative nature-
of the calculations and its simplicity for coding purposes. Since it pro--
vides an approximation to the primitive, it may be used for numerical
indefinite integration within a finite interval, -

However this method has several disadvantages. In cases when it
can be used, it is two or three times as expensive as the corresponding
Gaussian method (if the number of function values for this is known),
But the major disadvantage is that it can be used only in situations.
in which the convergence of the underlying Taylor expansion can be
assured. For example if there is a singularity near the integration inter-
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val, or if this ihterval is infinite, the direct use of this method becomes
highly impracticable.

In the first section of this paper we give a direct extension of results
obtained in [6] for the case of an analytical function in an annulus.
The resulting integration method thus obtained has all advantages of
the Lyness method. Meantime it is more elastic related to convergence
interval and can be applied for example in the case of the integrand
function having a singularity near the integration interval.

In the next two sections we describe simple transformations which
can be used when the integrand is an analytical function. Their purpose
is to replace the original problem by one amanable to the straightforward
method.

2. A quadrature schema based on Laurent-series expansion

Let f(2) be an analytical function in a domain which includes the
smooth curve I'' We shall attempt to evaluate numerically the integral

%3

(2.1) {7e)dz =\ 7(z)a

r 2
7z, and z, being the end points of the curve I' (the origin is chosen so
that we have |z| = |z,] = 7). We assume that the function f(z) is holo-

morphic in an annular region whose centre is at the origin, which inclu-
des the curve I'. Let R, be the radius of the inner circle and R, the
radius of the external one. In the annulus the function f(z) can be develo-
ped into Laurent-series

+ o
(2.2) f&) =3 .

j=—o

The coefficients a; are given by

1 . ‘
(2.3) aj:—S—ch.(_?—]-dC, 7=0,+£1 4+2, ...

2mi

r

C, being the circle of radius 7, (R, <7 < R,), with the center at the
origin. Formula (2.3) can be also written under the form

2 21
. 1 . L, 1 .
2.4) Waj::;Sf(re‘e) e=410 46 Ez_ns g(0)dd, =0, 4+1,...
0 0

The series (2.2) converges uniformly on the circle C,, and we have

(2.5) flre®) = +Em a;rie’,

===
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We shall estimate the coefficients a; from relation (2.4) by using a
numerical quadrature method. Since the integrand is a periodical func-
tion, one of the most efficient methods of numerical quadrature which
can be used in this case is the trapezoidal rule

M
2.6 Romug =1 il J
(2.6) 8= 28 (55
The resulting value for r*a, is
M
(2.7) 7han — ; flr exmiiint) p—mithim
b=—n—-1),...,—1,0, 1, ..., m—1, M=m4n—1.

Numerical approximations of integrals like those appearing in (2.4)
by the trapczoidal rule were considered in [3]. The author proved the
convergence of the method and made the error analysis. In the following
we shall rework this analysis by methods used in [6] in view of obtai-
gn;g some relations useful for numerical quadrature schema developed

elow.

The error introduced by using relation (2.6) can be estimated by
,aliasing’” [4]. Thus, since

o Tl {O %f kM # integer or zero
1 if B/M = integer or zero

by using relation (2.6) we have

k g(M) — 4k k—M k+M :
rhalM) = gk g, ¥ oy T Ma, -

(2.8) LGP o e A S
Accordingly, formula (2.7) is exact if the function f(z) is of the form
(2.9) &) = Prrpn-ala)fr,

Pits—z (z) being an arbitrary polynomial of a degree at most equal
to m 4 un — 2.

Moreover an iteration procedure can be given for determining the
coefficient ¢, Thus, the use of the mid-point trapezoidal rule

M
1 2f — )z
R[m.O]g = _j2=1g((]—).),

leads to the following approximation of the coefficients a,

i M (2f—1)mt _ik(2j—l)r:
k I3 73
7RO = — E (r e ) e

& M ,.=1f

=—m—-1),...,—1,0, 1, ..., (m — 1).

(2.10)

1
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This formula, like those above, is exact for the functions f(z) of the

form (2.9).

The relations

oM (0, = PNl = o)

/ al Lk B(M

ph—M b;fﬁw: phtM bﬁﬂiJM._. —y bs‘ )
k:—(ﬂ—l),‘.., 1, O, 1,"'1 (m—_l)'

as well as the formula which results form (2.6) and (2.10)
1
(2M,1] g = — { RIM, 1] R, 0]
ReM1 g = o g+ £}

permit the obtaining of the following reccurence relations

1 _1-
7ka§‘2M)=;{,,kagM)_|_ykbkM)}, —nt+l<hk<m—1;

(2.11) rk=M g2M) = %{r" a) — AL, k= 1, 2 ..., m—1,;

rht M gtM) — %{r" a) — hpP0L, k= — 1, -2, ..., —(n—1);

When these relations are used, account must be taken of the fact
that we dispose of two arbitrary parameters (# and m) and hence.wg
can increase either the number m of coefficients with positive subscripts
or that of coefficients with negative subscript, or the number of boths
sets of coefficients, function of the specific problem under consideration.

The convergence of this iteration procedure can be easily proved.
Thus, from (2.3) we obtain the inequalities

laj] <M, R;’, j >0,
la;l <M, Ry, j <0,

where

M;=max|f(z)]  j=1, 2

:ECJ-

The introduction of these inequalities into (2.8) leads to the esti-
mation
kM M-k
P2 Py
M )
_ pé” + 1 1 — pM

1

(2.12)

7% al — rha, | < M, 1

where p, = 7/R,, p; = Ryfr. From relation (2.12) we have

lim 7% al¥) = r* g,
M—=w®
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Tle coefficients thus obtained permit to give the following rational
approximation to the function f(2)

m—1

o= 3
j==Ta-1)

In order to estimate the error we write

m—1
J@) = f00) = 35 (4 — a2 + 3 a4,
J=—(n—1) _1::",
j>m,

By using relations (2.8) and the Cauchy’s inequalities we obtain

(2.13)

n m

0 — s < 2 (og, )

1—p 1 — p

This relation indicates that the function fl(z) constitutes a uni-
form approximation of the function f(2) on the circle |z] = 7.

We have also:

(2.14)

lim f(z) = £(o)

uniformly on the circle mentioned above.

Performing the quadrature of the function fIM)(z) we obtain the
following approximation to the primitive F (2) of the function f(z)

m—1 F+1
(2.15) FiMiz) = > » ™ —”ﬁ + aMlog 2.
ij—;g';— 7

If the function f(z) is a rational function of the form (2.9) the inde-
finite integration rule is exact. We have also

[F(z) — FM(2)] < 2me,

provided both functions F(z) and FW)(z) have same value at a point
on the circle. The recurrence relations (2.11) and formula (2.15) enables
us to obtain an iterative quadrature scheme.

3. The indefinite integral of a funection analytical on the real axis

Now let us assume that the real function f(x) is the restriction to
the Ox axis of the complex analytical function f(z). We assume that all
the singularities of the function lie within the circles

tk (P90 =05 (g—p); 0<p<y

in the complex plane z.
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We want to approximate f(z) on the whole feal axis Im {z} =0,
To this end we use the transformation

7 = z+ia

Z — 1a

’

which takes z = ¥ = arctg ; (real axis from z plane) into Z = ¢/ (unity
2

circle from Z plane). By this transformation the function f(z) becomes
the function

AL
(2) —-f(mz_l|
which takes real values on the circle |Z| = 1 and is analytic in an an-

nulus 1 — 3 < 7 < 1 4 %. For the function ®(Z) we can use the previous
theory to obtain the approximation

+m :
PUNZ) = 3 ainZ,

i==m

where M = 2 m -+ 1. The coefficients & result now from relation

M-1 .
=1 {E flocte o +f<oo)}
3 1) M\|j= M
i dM_ g r—0, 12 ..., m

Takinig the inverse transformation we obtain the following approxi-
mation of the function f(x)

©2 ooy = 35 o (2.

The primitive of this function approximates uniformly the primitive
F(x) of the function f(x) over every finite interval of the real axis. Thus
we have

FM)(x) = xf(0) — 4alnp - p(lM) - sin (p(lM) -+ 4(pap(1M)COS <p(1M) -

(3.3)
” (2a) (M) . ; .
—.Zfl%ﬂwp§+¢m+u—nﬁ:
~ 5
where

x4 ia=pee; 0 <o < m;
(M)

m k o )
)kt = e e

k=jlJ
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Formula (3.2) is exact for the rational functions of the form

“Pom(#)
x) = .
flo) = Ll
Its use requires the evaluation of the function f(x) at 2m points lying
on the Ox axis. A discussion similar to that given in the preceding section
can be used to prove that we have lim FM)(x) = F(x) over every finite

Mm—r0

interval of the real axis.

Now let us assume that the function f(x) has singularities on the real
axis outside the interval [¢, 4] where its primitive is to be calculated.
We shall perform the change of variable

1 1

x—oJZ; o(,:(oc—c)i; BI=(3~C)E,

d—x

4

Xl =

which yields

L2 ] (14w

% flx) dx = S f("”'” s ”] 2010 =0 gy,

o

The new function

A ax't + ¢\ 24'(d — ¢)
g(x) _f(1+x,2] (1 + 22

has no singularities on the real axis, In addition, since in the argument
of the function f the variable &' intervenes only by its square, it follows
that the use of formula (3.2) implies the evaluation of the function f(x)
only at m points,

The theory above can be used for obtaining numerical quadrature
formulas for integrals with weighting factors. Thus, using the approxima-
tion (3.2) to f(x) we obtain the following quadrature formula

; () " o
! Y o
S B g = 2 arctg © — : > (2a)  som X
(3.4) A% at a a 4 j=1 ¢
X sin (jcp + j—; — cpj(-M)) + R,
where

ne

Y (M — N AL
Z:(-Jag) FhT = el

k=j\]J
and R,, denotes the truncation error.

The above quadrature rule is exact for same class of functions such
as formula (3.3). It constitutes an approximation for the primitive valid
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on the whole real axis and is useful for evaluating slowly convergent inte-
grals. If the integration interval coincides with the Ox axis the numerical
quadrature formula (3.4) reduces to the TAN rule considered in [8].

To estimate the error R, we can write

PO
x* RS A

_ | ¢ e = /M) B v
Ry = | [P an | < maxif) — foo) § < e g
Thus, we get lim R; = 0.
As an applica:cnion we shall estimate the integral
c 2x% 4 5 1 1
I, = ex L dx, c > 0.
’ S(x+1)2(x+4)2 p{(x+ N+ 4 &

0

This quadrature can be analytically performed and gives

= eXp{(o e+ 4)}'

Since the integrand has singularities on the negative real axis, the use 9f
formulas (3.3) or (3.4) requires the preliminary change of variable x = %™
Using formula (3.2) with m = 10, we have obtained results of relative
accuracy 10—® for values of ¢ ranging from 0,5 to 64. On the other hapd,
using the Gauss-Legendre ten point formula, we need different abscises
for cach value of ¢. For values of ¢ less than 4 the accuracy is greater
about 10~7, but for the larger values of ¢ this accuracy degrades being
10— at ¢ = 64. When formula (3.4) was applied results of relative accuracy
10— were obtained for values of ¢ ranging form 0,5 to 10%.

4. Numerical integration scheme based on the residue theorem

Let us estimate the integral
b
| Fiz)dz

where f(x) is the restriction to the real axis of an analytical function in
the complex plane z = x + 1y, without singularities on the segment [a, b].

We consider the function

(4.1) Bz) = - f(z) - log
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This is an analytical function in the complex plane which has the cut
[a, b] on the real axis. The values of the real part of the function 4(z) on
the Ox axis are

0 x<a; x>0, =0
(4.2) Re {h(z)} = | f(x) a << x <b, y=+40
—flx) a<x <), y=—0

We apply the residue theorem to the function A(z) for the domain
bounded by the cut indicated above and by a circle of radius R which inclu-
des this cut. If in this domain the function /(z) has only isolated singular
points, we have

b

(4.3) 2 fla) dx + \ e) dz =2 > Rez {he), o)

a cR

The sum which appears in the right-hand side of this relation extends
to all singular points «; of the function A(z) in the considered domain. If
2 = 20 - Re'® is the equation of te circle Cp, from (4.3) we get

b 2n

(4.4) g flx)dx = ;_ [ Az + Re0)Re®® - d6 - mi 35 Rez {h(z), o).
“ . (7
0

The residues which appear in this relation can be analytically estima-
ted [5], and the integral in the right-hand side of relation (4.4) can be
numerically approximated. As the integrand is a periodical function
formula (2.6) can be used for its estimation. In this formula we set 3 =
= 2m and assume that z, is real.

Since on the axis OX the function f(z) assumes real values, we have
f(2) = f(z). Consequently, the application of this formula requires cnly
m—1 evaluations of the complex function f(z) and two cvaluation of the
real function f(x). Finally, we get

6 m—1

(4.5) Sf(x)dx =Y Rez {f(z) log =2 a].} — l{?; (2 — 2) x

)
T3] z a "

@

Zyy — bJ

3

X f(2;) log

where

2 — b 29 — 209 2o — b Zy — 2°
" f(z0) log =—— + =~ f(2,,) log
zj —a 2 2o — a 2 ) Ly

PIEs 20 - Refinm, ] = 011, .. m;

The error resulting from the use of formula (4.5) can be expressed by
relation (2.12) where 2 = 0 and
M; = max |h(z)].

zECj
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This relation shows that the error is the smaller the more remote is
the circle Cp, from the singularities of the function A(z). This gives a critc-
rion for the choice of this circle.

Relation (4.5) can be extended to the calculation of finite part integrals,
Likewise, it can be successfully used to the problem of quadrature close
to an unintegrable singularity.

As an example of application of the method described above, we shall
try to evaluate numerically the integral

1
2
Iz 1 S dx )
sin? ma
A
which was also considered in [6].
The function
1
[z = —
sSme w2
has second order poles at the points z = 0, has second order poles at the
has second order poles at the points 2 =10, -1, + 2, ... We choose

the circle Cp = {z =0,2 + 0,5¢°}. Inside this circle the function h(2)
has a second order pole-at the origin with the residuc
Rez {h(z), z = 0} = 2 . 1=24.

i 7d A

The results of calculation indicate that this method gives results of
an order of accuracy comparable with that given in [6], that is a relative
error of about 10722,

6. Conclusions

The theory of complex variable functions can be stccessfully applied
to problems of numerical analysis for analytical functions. The results
obtained in [6] can be extended to the case of holomorphic functions in
an annular region.

The formulas for the indefinite integral obtained on the basis of this
generalization prove to be particularly efficient in all examples considered.

Likewise, the use of the residue theorem combined with the numerical
quadrature formula for periodical functions to the quadrature scheme (4.5)
which is also efficient for analytical functions.

All the integration rules obtained can be successfully used due to
their iterative aspect and analytic simplicity.

The quadrature formulas (2.15), (3.3), (3.4) are also advantageous in
that they permit one to obtain expressions for the primitive functions at
no significant additional cost. A drewback of all formulas given is that
they can be applied only to analytical functions.
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