MATHEMATICA – REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 7, № 2, 1978, pp. 193—209

fill have some aft for generating the first first filler and induced and

NUMERICAL EVALUATIONS OF COMPRESSIBILITY CORRECTIONS IN WAKE FLOWS

by

SIMONA POPP (București)

Introduction

The study of compressible fluid flow has been substantiated at the beginning of this century by S. A. CHAPLYGHIN [1] in his well-known doctorial thesis, in which he gives two research methods, an exact one and an approximate one. Both methods are hodograph methods. This means that one should use the independent variables V and θ (V is the magnitude of the velocity vector and θ the angle made by this vector with a certain direction).

Chaplygin's methods led subsequently to numerous and important investigations in the field [2], [3]. However, his exact method and its extension due to s. v. FALKOVICH [4] can be applied only to some classes of motion and imply laborious calculations.

In addition, to the advantage of linearizing the system of motion equations, the hodograph metod has some disavantages related to the passing from the hodograph plane to the physical plane.

Therefore, it was necessary to use approximate methods which operate in the physical plane, that is the so-called direct methods.

One of the most interesting methods of this kind, which can be applied to various classes of motion is that given by I. IMAI [5], E. LAMBA [6] and C. JACOB [7].

With this method and with other numerous remarkable investigations, c. JACOB inscribed Romania among the first countries which contributed substantially to the study of compressible flows even since 1933-1934, [8], [9], [10], [11], [12].

(1.4)

NUMERICAL EVALUATIONS OF COMPRESSIBILITY CORRECTIONS

s 195

The Imai-Lamba-Jacob method has been adapted to the examination of configurations which imply wakes [2], [3].

In the following, we shall briefly present the Imai-Lamba-Jacob method and emphasize particularly the formulas we have obtained in a previous work by using this method [2].

Particular stress will be laid on the expressions of the drag and lift coefficients in wake problems in an unbounded fluid in which a wedge-shaped body or a flat plate inclined with respect to the stream velocity at infinity upstream, is placed.

The numerical values of the above coefficients are listed in tables and diagrams and compared to similar values corresponding to the incompressible fluid.

The purpose of this paper is to estimate, numerically, the compressibility effects on various motion elements.

1. The Imai-Lamba-Jacob method

We consider the bidimensional, subsonic, steady, irrotational motion of a compressible fluid subjected to the isentropic law,

(1.1) $\frac{p}{p_0} = \left(\frac{\rho}{\rho_0}\right)^{\gamma}$

p and ρ being the fluid pressure and specific mass, respectively, p_0 and ρ_0 the same quantities for zero velocity and $\gamma = c_p/c_v$ (c_p is the specific heat under constant pressure and c_v the specific heat at constant volume). Let $\varphi(x, y)$ be the velocity potential, $\psi(x, y)$ the stream function, u(x, y) and v(x, y) the projections of the velocity \vec{V} on the orthogonal coordinate axes Ox and Oy in the motion plane (Ox has the same direction as that of the velocity vector at infinity upstream).

By virtue of the fundamental system

(1.2)
$$\frac{\partial \varphi}{\partial x} = \frac{\rho_0}{\rho} \frac{\partial \psi}{\partial y}, \quad \frac{\partial \varphi}{\partial y} = -\frac{\rho_0}{\rho} \frac{\partial \psi}{\partial x}$$

we obtain the relation,

(1.3)

$$\frac{\partial f}{\partial \bar{z}} = \frac{1 - \frac{\rho}{\rho_0}}{1 + \frac{\rho}{\rho_0}} \frac{\partial \bar{f}}{\partial \bar{z}}$$
by introducing the functions $f(z, \bar{z}) = \varphi + i\psi$, $\bar{f}(z, \bar{z}) = \varphi - i\psi$ with $z = z + iy$ and $\bar{z} = x - iy$.

and the second second

The function f and \overline{f} can be expanded in the following power series,

$$f(z, \tilde{z}) = f_0 + M_{\infty}^2 f_1 + M_{\infty}^4 f_2 + \dots$$

 $\overline{f}(z, \overline{z}) = \overline{f_0} + M_{\infty}^2 \overline{f_1} + M_{\infty}^4 \overline{f_2} + \dots$ where $M_{\infty} = \frac{V_{\infty}}{c}$ is the Mach number.

By replacing (1.4) into (1.3) and equalizing the coefficients of the same powers of M_{∞} we deduce the relations,

$$f_{0} = f_{0}(z) = \varphi_{0}(x, y) + i\psi_{0}(x, y),$$

$$f_{1}(z, \bar{z}) = \varphi_{1}(x, y) + i\psi_{1}(x, y) =$$

$$= \frac{1}{4v_{\infty}^{2}} \frac{df_{0}}{dz} \int_{z_{0}}^{z} \left(\frac{df_{0}}{dz}\right)^{2} dz + \frac{1}{4} g(z)$$

$$f_{2}(z, \bar{z}) = \varphi_{2}(x, y) + i\psi_{2}(x, y) = \dots$$

where the functions $f_0(z)$ and g(z) are analytical functions of z which can be determined by using the boundary conditions specific to problems under examination. In the problems of Helmholtz type we shall be concerned with, the function $f_0(z)$ will be chosen as complex potential of the incompressible motion corresponding to the same walls and the same velocity at infinity upstream as in the compressible motion.

The function g(z) will be determined through the intermedium of another function $g_1(z) = g(z) + f_0(z)$, that is the determination reduces finally to the solution of a boundary problem of mixed type.

Once the function $f_0(z)$ and g(z)are obtained, various motion elements can be calculated.

Detailed researches in this respect have been carried out in my papers [2], [3].

2. Expression of the drag coefficient for the wedgeshaped body

We consider the wedge P_1OP_2 $(OP_1 = OP_2 = l)$ with an included angle of 2μ , situated in a subsonic, unbounded flow with the velocity \vec{V}_{∞} at infinity upstream. From the ends P_1 and P_2 the free lines λ_1 and λ_2 separate (Fig. 1).

NUMERICAL EVALUATIONS OF COMPRESSIBILITY CORRECTIONS

4

5

The drag coefficient C_p is defined by the relation,

$$C_{\mathcal{D}} = \frac{R_{\star}}{\rho_{\infty} V_{\infty}^2 \, l \sin \mu} \tag{2.1}$$

where R_x represents the resultant of the aerodynamic forces acting on the body in the Ox direction, R_y being equal to zero due to the configuration symmetry.

SIMONA POPP

Using the Imai-Lamba-Jacob method and taking account of relation (2.1), in paper [2] we have obtained the expression of C_D under the from,

(2.2)
$$C_{D} = \frac{4\mu^{2}}{\pi \sin \mu \left[1 + \frac{2\mu}{\pi} + \frac{4\mu^{2}}{\pi^{2}} \beta \left(1 - \frac{\mu}{\pi}\right)\right]} \times \left\{1 + M_{\infty}^{2} \frac{\pi \sin \mu \left[1 + \frac{2\mu}{\pi} + \frac{4\mu^{2}}{\pi^{2}} \beta \left(1 - \frac{\mu}{\pi}\right)\right] - 2\mu^{2}}{2\pi \sin \mu \left[1 + \frac{2\mu}{\pi} + \frac{4\mu^{2}}{\pi^{2}} \beta \left(1 - \frac{\mu}{\pi}\right)\right]}\right\}$$

where $\beta(x)$ is the Stirling function, (2.3) $\beta(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{n+x}$

3. Numerical results

By virtue of formula (2.2) we have carried out numerical calculations.

The results are given in Tables 1, 2 and 3, which include values of the drag coefficient for different μ angles varying from 5° to 90° and for Mach numbers M_{∞} from 0.1 to 0.9.

Meanwhile, the similar values of the drag coefficients corresponding to the incompressible fluid are also listen in the table 4.

In this case the expression of the drag coefficient is given by the formula,

(3.1)
$$C_{D_{i}} = \frac{4\mu^{2}}{\pi \sin \mu \left[1 + \frac{2\mu}{\pi} + \frac{4\mu^{2}}{\pi^{2}} \beta \left(1 - \frac{\mu}{\pi}\right)\right]}$$

Tables 5 shows the variation of the coefficient C_D with respect to M_{∞} , for selected values of μ angle.

These tables are accompanied by the diagrams given in figures 2 and 3.

These tables are accompanied by the diagrams given in figures 2 and 3.

	TABLE 1			TABLE 2				
	С	D					CD	
μ	0.1	0.2	0.3	Ī	M ₈	0.4	0.5	0.6
5°	0.10568	0.10716	0.10966	del sel Locatio	5°	0.11314	0.11762	0.12314
10°	0.20028	0.20296	0.20746	C	10°	0.21374	0.22184	0.23172
15°	0.28504	0.28870	0.29480		15	0.30336	0.31434	0.32790
20 °	0.36102	0.36548	0.37290	GU	20°	0.38330	0.39668	0.41304
25 °	0.42922	0.23432	0.44284	and the second second	25.°	0.45476	0.47010	0.48884
30°	0.49044	0.49610	0.50554	- T.	30°	0.51874	0,53574	0.55650
35°	0.54542	0.55156	0.56180	002.004	35°	0.57612	0.59454	0.61706
40°	0.59484	0.60140	0.61234	01010	40°	0.62766	0.64734	0.67142
45°	0.63924	0.64620	0.65778	2.101	45°	0.67402	0.69488	0.72036
50°	0.67908	0.68650	0.69870		50°	0.71570	0.73776	0.76460
55°	0.71508	0.72278	0.73558		55°	0.75350	0.77656	0.80472
60°	0 74738	0.75544	0.76884	1.00	60°	0.78762	0.81178	0.84128
65.9	0 77642	0 78496	0.79890		65 °	0.81856	0.84384	0.87476
70.0	0.80256	0.81138	0.82610		70°	0.84670	0.87318	0.90556
750	0.82604	0.83530	0.85074	11111	75°	0.87236	0.90016	0.93412
80.0	0.84716	0.85690	0.87314		80°	0.89588	0.92510	0.96082
85.0	0.86616	0.87742	0.89354		85°	0.90752	0.94832	0.98598
90°	0.88324	0.89410	0.91220		90°	0.93756	0.97016	1.01000

Τ	A	в	L	E	3

C.D.

TABLE 4

μ M _∞	0.7	0.8	0.9		μ	C _D
5°	0.12592	0.13706	0.14552		5°	0.10518
10°	0.24340	0.25688	0.27214	1.20	10°	0.19938
15°	0.34366	0.36200	0.38276		15°	0.28382
20°	0.43232	0.45460	0.47986	0	20 °	0.35954
25°	0.51098	0.53654	0.56550		25 °	0.42752
30°	0.58104	0.60936	0.64024		30°	0.48856
35°	0.64366	0.67436	0.70916		35 °	0.54340
40°	0.69986	0.73268	0.76988	e****	40°	0.59268
45°	0.75050	0.78526	0.82466		45°	0.63698
50°	0.79634	0.83294	0.87444		50°	0.67680
55°	0.83802	0.87644	0.91998	1	55°	0.71260
60°	0.87616	0.91640	0.96202	1999	60°	0.74478
65 °	0.91126	0.95340	1.00116		65 °	0.77372
70°	0.94382	0.98798	1.03800		70°	0.79972
75°	0.97426	1.02058	1.07308		75°	0.82310
80°	1.00302	1.05172	1.10692		80°	0.84408
85°	1.03050	1.08184	1.14006		85 °	0.86290
90	1.05710	1.11142	1.17300	-	90°	0.87980

196

7

Q

0,1

0,2

0.3

TABLE 5

SIMONA POPP

M _{so}	15°	30°	45°	60 °	75°	90°
0.10	0.28504	0.49044	0.63924	0.74738	0.82604	0.88324
0.15	0.28656	0.49280	0.64214	0.75074	0.82890	0.88776
0.20	0.28870	0.49610	0.64620	0.75544	0.83530	0.89410
0.25	0.29144	0.50034	0.65142	0.76146	0.84226	0.00410
0.30	0.29480	0.50554	0.65778	0.76884	0.85274	0.00229
0.35	0.29878	0.51166	0.66532	0.77756	0.86078	0.92395
0.40	0.30336	0.51874	0.67402	0.78762	0.87236	0.93756
0.45	0.30854	0.52678	0.68386	0.79902	0.88428	0.95296
0.50	0.31434	0.53574	0.69488	0.81178	0.90016	0.97016
0.33	0.32076	0.54564	0.70704	0.82586	0.91636	0.98918
0.60	0.32778	0.55650	0.72036	0.84128	0.93412	1.01000
0.03	0.33542	0.56830	0.73486	0.85806	0.95342	1.03264
0.76	0.34366	0.58104	0.75050	0.87616	0.97426	1.05708
0.80	0.33232	0.59472	0.76730	0.89562	0.99666	1.08334
0.85	0.30200	0.60936	0.78526	0.91640	1.02058	1.11142
0.90	0.37208	0.62492	0.80438	0.93854	1.04606	1.14130
0.00	0.06276	0.64144	0.82466	0.96202	1.07208	1.17300

From all tables and diagrams the following conclusions can be drawn: 1. The drag coefficient increases with the increase of the μ angle reaching a maximum value for $\mu = 90^{\circ}$.

2. For any angle μ the drag coefficient C_D increases with the increase of the Mach number M_{∞} .

3. The drag coefficient for a body placed in a compressible fluid is always higher than that corresponding to the incompressible fluid and the difference between the respective coefficients increases with the increase of the angle μ and M_{∞} . (Fig. 3)

4. Inclined Flat Plate

We consider a flat plate $P_1P_2 = l$ placed in an unbounded compressible fluid (fig. 4).

The plate is inclined by an angle α with respect to the direction of the fluid velocity V_{∞} .

In the physical plane we consider a reference system Oxy with the origin at the stagnation point O on the plate.

The Ox-axis has the direction of V_{∞} and the Oy-axis is perpendicular to it.

From the edges P_1 and P_2 of the plate two free streamlines λ_1 and λ_2 separate.

The normal to the plate froms with Ox-axis the angle δ .

0,6

0,5

Fig. 2.

0,7

0,6

1.5

NUMERICAL EVALUATIONS OF COMPRESSIBILITY CORRECTIONS

Using again the Imai-Lamba-Jacob method, in paper [2], we have determined the resultant of the aerodynamics forces acting on the plate under the form, (4.1) $R_x - iR_y = \rho_{\infty} lV_{\infty}^2 \frac{e^{-i\delta \pi \cos \delta}}{4 + \pi \cos \delta} \times \frac{1}{2} + \frac{2}{4 + \pi \cos \delta} M_{\infty}^2$, or

$$\begin{aligned} R_{x} &- iR_{y} = \rho_{\infty} \ lV_{\infty}^{2} \ \frac{e^{-i\sigma \pi \cos \delta}}{4 + \pi \cos \delta} \times \\ &\times \left[1 + \frac{2}{4 + \pi \cos \delta} M_{\infty}^{2} \right], \quad \text{or} \\ R_{y} &= \rho_{\infty} \ lV_{\infty}^{2} \ \frac{e^{-i\left(\alpha - \frac{\pi}{2}\right)}}{4 + \pi \sin \alpha} \times \\ &\times \left[1 + \frac{2}{4 + \pi \sin \alpha} \right] M_{\infty}^{2}. \end{aligned}$$
Fig. 4

NUMERICAL EVALUATIONS OF COMPRESSIBILITY CORRECTIONS

5. Expressions of the drag and lift coefficients

In view of the relations which define the drag and lift coefficients expressed by,

5.1)
$$C_D = \frac{R_x}{\frac{1}{2} \rho_{\infty} V_{\infty}^2 l} \text{ and } C_L = \frac{R_y}{\frac{1}{2} \rho_{\infty} V_{\infty}^2 l}$$

as well as the relation (4.2), we obtain the following expressions of the above coefficients for the compressible fluid

(5.2)
$$C_D = \frac{2\pi \sin^2 \alpha}{4 + \pi \sin \alpha} \left(1 + \frac{2M_{\infty}^2}{4 + \pi \sin \alpha} \right) \quad \text{and}$$

(5.3) $C_L = \frac{2\pi \sin \alpha \cos \alpha}{4 + \pi \sin \alpha} \left(1 + \frac{2M_{\infty}^2}{4 + \pi \sin \alpha} \right)$

For the incompressible fluid the similar coefficients can be expressed as follows:

5.4)
$$C_{D_i} = \frac{2\pi \sin^2 \alpha}{4 + \pi \sin \alpha} \text{ and } C_{D_i} = \frac{2\pi \sin \alpha \cos \alpha}{4 + \pi \sin \alpha}$$

6. Numerical results

Tables 6, 7 and 8 list the values of the drag coefficient for various α -angles and Mach numbers M_{∞} from 0.1 to 0.9.

Tables 9, 10 and 11 list the values of the lift coefficient for the same values of α and M_{∞} .

It should be noticed that in Tables 9, 10 and 11 the maximum values of the lift coefficient as well as the corresponding angles are underlined. Accompanying diagrams are given in figs. 5, 6, 7, 8.

Similar values for drag and lift coefficients corresponding to the incompressible fluid are included in tables 12 and 13.

Tables 14 and 15 list the values of C_D and C_L for selected values of μ angles and M_{∞} varying from 0.05 to 0.90.

9

 $R_{x} - iR_{y} = \rho_{x}$

(4.2)

Fig. 8.

15

α

M_c,

ά

 C_D

X Ma	0.1	0.2	0.3
5°	0.01122	0.01137	0.01163
10°	0.04186	0.04241	0.04333
15°	0.08781	0.08890	0.09071
20°	0.14541	0.14712	0.14998
25°	0.21143	0.21380	0.21776
30°	0.28298	0.28602	0.29108
35°	0.35751	0.36119	0.36733
40°	0.43272	0.43702	0.44418
45°	0.50659	0.51146	0.51957
50°	0.57732	0.58271	0.59169
55°	0.64333	0.64919	0.65894
60°	0.70326	0.70952	0.71995
65 °	0.75593	0.76254	0.77354
70°	0.80035	0.80724	0.81872
75°	0.83573	0.84284	0.85468
80°	0.86144	0.86870	0.88081
85 °	0.87704	0.88440	0.89666
90°	0.88226	0.88966	0.90197

C	D	
0.4	0.5	0.6
0.01200	0.01247	0.01305
0.04461	0.04626	0.04828
0.09326	0.09653	0.10053
0.15398	0.15911	0.16540
0.22329	0.23041	0.23910
0.29817	0.30728	0.31841
0.37593	0.38698	0.40050
0.45421	0.46710	0.48287
0.53094	0.54555	0.56340
0.60427	0.62044	0.64020
0.67260	0.69017	0.71163
0,73456	0.75334	0.77629
0.78895	0.80877	0.83298
0.83479	0.85545	0.88070
0.87127	0.89259	0.91865
0.89776	0.91956	0.94€20
0.91384	0.93592	0.96290
0.91922	0.94140	0,96850
	0.4 0.01200 0.04461 0.09326 0.15398 0.22329 0.29817 0.37593 0.45421 0.53094 0.60427 0.67260 0.73456 0.78895 0.83479 0.87127 0.89776 0.91384 0.91922	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 7

5°	0.13720	0.14258	0.14915		5°	0.15691
10°	0.25302	0.26239	0.27383	_	10°	0.28735
15°	0.34806	0.36026	0.37518		15°	0.39281
20°	0.42304	0.43716	0.45441		20°	0.47480
25°	0.47885	0.49411	0.51276		25°	0.53481
30°	0.51644	0.53222	0.55151	1.1	30°	0.57430
35 °	0.53688	0.55267	0.57196		35 °	0.59476
38°34' 8''	1245	11 22 3 1	0.57611		37 °52'24''	de Cala
38°45′56″		0.55715	1 124 O.		38°7' 3"	0.000
38°56′ 7″	0.54165				38°21'4''	0.59856
40 °	0.54131	0.55668	0.57546	1000	40°	0.59766
45°	0.53094	0.54555	0.56340		45°	0.58450
50°	0.50704	0.52061	0.53719		50°	0.55679
55°	0.47096	0.48326	0.49829		55 °	0.51605
60°	0.42410	0.43494	0.44819		60°	0.46385
65 °	0.36790	0.37713	0.38843		65°	0.40177
70°	0.30384	0.31136	0.32055		70°	0.33141
75°	0.23346	0.23917	0.24615	1 - K - I	75°	0.25441
80°	0.15830	0.16214	0.16684		80°	0.17239
85°	0.07995	0.08188	0.08424	614 C.S.	85 °	0.08703

0.87980

0.6

TABLE 12

TABLE 10

 C_L

0.5

0.4

 \overline{M}_{∞}

TABLE 13

 C_{L_i}

Moo	0.7	0.8	0.9
0	0.01373	0.01451	0.01540
è.	0.05067	0.05341	0.05653
2	0.10525	0.11070	0.11688
	0.17281	0.18138	0.19108
	0.24938	0.26125	0.27469
	0.33157	0.34676	0.36397
	0.41646	0.43488	0.45576
	0.50150	0.52299	0.54736
	0.58450	0.60885	0.63645
	0.66355	0.69051	0.72105
	0.73700	0.76627	0.79945
	0.80342	0.83472	0.87019
	0.86160	0.89463	0.93205
	0.91055	0.94499	0.98402
	0.94945	0.98499	1.02527
	0.97768	1.01401	1.05518
	0.99480	1.03160	1.07331
	1.0005	1.03749	1.07938

TABLE 8

~

Ma	0.1	0.2	0.3
5°	0.12824	0.12899	0.13302
10°	0.23742	0.23872	0.24574
15°	0.32771	0.32941	0.33856
20°	0.39952	0.40148	0.41206
25 °	0,45341	0.45553	0.46698
30°	0.49014	0.49233	0.50417
35°	0.51057	0.51276	0.52460
39°4′24″		1. Angel 1.	0.52961
39°10'32″		0.52101	
39°14'17''	0,51586	1000	-
40°	0.51569	0.51783	0.52935
45°	0.50659	0.51146	0.51957
50°	0.48443	0.48631	0.49649
55 °	0.45047	0.45217	0.46140
60°	0.40603	0.40753	0.41567
65°	0.35250	0.35378	0.36071
70°	0.29130	0.29235	0.29799
75°.	0.22393	0.22473	0.22901
80°	0.15189	0.15243	0.15531
85 °	0.07673	0.07700	0.07845

TABLE 9

 C_L

	C_{D_i}						
	α	C _{Di}	ø.	C_{D_i}			
	5°	0.01116	50°	0.57552			
	10°	0.04168	55°	0.64138			
	15°	0.08745	60°	0.70117			
	20°	0.14484	65°	0.75373			
	25°	0.21064	70°	0.79806			
	30°	0.28197	75°	0.83335			
	35°	0.35627	80°	0.85901			
1	40°	0.43128	85°	0.87458			

0.50496

45°

90°

	α	C_{L_i}	α	C_{L_i}
	5°	0.12765	45°	0.50496
	10°	0.23638	50°	0.48292
÷.,	15°	0.32636	55°	0.44910
	20°	0.39795	60°	0.40482
	25°	0.45172	65°	0.35147
1	30°	0.48839	7 0°	0.29047
dji Selet	35°	0.50882	75°]	0.22330
	39°15′11″	0.51414	80°	0.15147
	40°	0.51398	85°	0.07652

0.8

0.16588

0.30295

0.41315

0.49833

0.56024

0.60060

0.62107

1000

0.62449

0.62328

0.60885

0.57940

0.53655

0.48193

0.41717

0.34395

0.26393

0.17880 0.18606

0.09025 0.09390

 C_L

0.7

207

0.9

0.17603

0.32063

0.43620

0.52499

0.58907

0.63041

0.65089 0.65392

-

0.65231

0.63645

0.60503

0.55978

0.50241

0.43462

0.35815

0.27472

NUMERICAL EVALUATIONS OF COMPRESSIBILITY CORRECTIONS

209

TABLE 14

Cn

T _{co}	5°	10°	15°	20°	30°
0.05	0.01118	0.04173	0.08754	0.14498	0.28222
0.10	0.01122	0.04186	0.08781	0.14541	0.28298
0.15	0.01128	0.04209	0.08826	0.14612	0.28425
0.20	0.01138	0.04242	0.08890	0.14712	0.28602
0.25	0.01149	0.04283	0.08972	0.14841	0.28826
0.30	0.01164	0.04333	0.09072	0.14998	0.29108
0.35	0.011808	0.04393	0.09190	0.15183	0.29437
0.40	0.01200	0.04462	0.09326	0.15398	0.29817
0.45	0.01223	0.04540	0.09481	0,15640	0.30247
0.50	0.012474	0.04627	0.09653	0.15911	0.30728
0.55	0.01275	0.04723	0.09844	0.16211	0.31259
0.60	0.01305	0.04828	0.10053	0.16539	0.31841
0.65	0.01337	0.04943	0.10280	0.16896	0.32474
0.70	0.013728	0.05066	0.10525	0.17281	0.33157
0.75	0.014107	0.05200	0.10789	0.17695	0.33891
0.80	0.01451	0.05342	0.11070	0.18138	0.34676
0.85	0.01494	0.05493	0.11370	0.18609	0.35511
0.90	0.01540	0.05654	0.11688	0.19108	0.36397
			The second second	11.1000.01	1.1

TABLE 15 CT.

d _{oo} d	5°	10°	15°	20 °	30°
0.05	0.12779	0.23664	0.32669	0.39833	0.48882
0.10	0.12824	0.23742	0.32772	0.39952	0.49014
0.15	0.12899	0.23872	0.32941	0.40148	0.49233
0.20	0.13003	0.24054	0.33178	0.40422	0.49540
0.25	0.13138	0.24288	0.33483	0.40775	0.49935
0.30	0.13302	0.24574	0.33856	0.41206	0.50416
0.35	0.13496	0.24912	0.34297	0.41716	0.50987
0.40	0.13720	0.25303	0.34806	0.42304	0.51644
0.45	0.13974	0.25745	0.35382	0.42971	0.52389
0.50	0.14258	0.26238	0.36026	0.43716	0.53222
0.55	0.14572	0.26785	0.36738	0.44539	0.54143
0.60	0.14915	0.27383	0.37518	0.45441	0.55151
0.65	0.15288	0.28033	0.38365	0.46421	0.56247
0.70	0.15692	0.28735	0.39281	0.47480	0.57430
0.75	0.16125	0.29489	0.40264	0.48617	0.58701
0.80	0.16588	0.30295	0.41325	0.49833	0.60060
0.85	0.17080	0.31153	0.42434	0.51127	0.61507
0.90	0.17603	0.32063	0.43621	0.52499	0.63041

REFERENCES

[1] Chaplygin, S. A., Gas jets. Collected Works, vol. 2, Moscow, 1948, pp. 19-131.

- [2] Popp, S., Cercetări asupra determinării corecțiilor de compresibilitate la miscări plane in regim subsonic. (Researches on the determination of compressibility corrections for subsonic plane flows). Studii și cercetări matematice 1, 1961, pp. 37-90.
- [3] Popp, S., Corrections de compressibilité dans le problème du bilame symétrique. Comptes rendus Acad. Sci. Paris, t. 249, pp. 619-621 (1959).
- [4] Falkovich, S. V., About Gas jets Theory, Prikladnaja Matematica i Mehanika (Translated as: J. Appl. Math. Mech.), vol 21, pp. 459-464 (1957).

[5] I m a ï, I., Proceedings of the Physico-Math. Soc. of Japan, t. 24, pp. 120-129 (1942).

[6] Lamba, E., Luftfahrtforschung, 19, 358-362 (1942).

[7] Jacob, C., Sur la méthode approchée de M. Lamba en Dynamique des fluides compressibles. Bull. Sect. Sci. Acad. Roum. București, XXVIII pp. 637-641 (1945).

[8] Jacob, C., Sur quelques problèmes concernant l'écoulement des fluides parfaits compressibles. Comptes rendus, Acad. Sci. Paris, t. 197, pp. 125-127 (1933).

[9] Jacob, C., Sur un problème concernant les jets gazeux. Mathematica, Cluj, vol 8. pp. 205-211 (1934).

[10] Jacob, C., Introduction mathématique à la Mécanique des fluides. Ed. Acad. R.P.R. -- Gauthier-Villars, Bucarest-Paris, 1959.

[11] Jacob, C., De l'influence de la compressibilité sur les écoulements fluides. Disquisitiones Mathematicae et Physicae, t. 6, pp. 193-223 (1947).

[12] Jacob, C., Actes du IX-e Congrès International de Mécanique appliquée, t. I. 1957. pp. 464-475 (1957).

[13] Tricomi F. G., Atti della 2-a Riunione del Groupement de Mathématiciens d'expression latine. Firenze, 26-30 settembre, 1961, Bologna, 1-3 ottobre 1961, Edizioni Cremonese, Roma (1963), p. 258.

[14] Gurevici, M. I., Teorija ticenii so sovobodnynei poverlinosteami. Itogi nauki, Gidromehanika, t. V, p. 63, Moskva, 1971.

Received 7.V.1978 feverate the construction of ante-shine whise intervalue two much on to be Institutul Politehnic

București

 $7 \rightarrow$ L'analyse numérique et la théorie de l'approximation \rightarrow Tome 7 No. 2, 1978