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In a previous paper [5] we gave conditions under which the expli-
cit difference analogue to (1.1)—(L.3) has a solution converging to the
exact one. Some of conditions given there are very restrictive and exclude
data interesting from the physical point of view. It is the aim of the
present paper to show that the results hold under much larger and natu-
ral conditions.

1. Formulation of the problems. Consider the following problem :

(1.1) ‘;_’: — Ao(w) on Q = Q x .10, T
(1.2) u(x, 0) = ue(x) % e Q
(1.3) w(x, t) = uy(%, t) on S= QX ]J[0, T).

As in [5] we suppose the following assumptions to hold:

Q) u, e C(Q) w < C(S), #g t 20
(4) (i) Ao e C¥R,), ¢(u) and ¢'(w) >0 for u >0
0(0) = ¢'(0) =0, ¢"(u) 20 for » 2 0.

We also suppose that Q C R* (for simplicity) and that:this domain is
bounded, regular and convex.
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We called a function # < L*(Q) a solution of (1.1)—(1.3) if
A 2 ;)

(i) ” e L¥Q) 71=1,2

(11) Conditions (1.2)—(1.3) are fulfilled (in the generalized sense)
(ili) « =20 (a.e.) on Q

(iv) For any f < CY{Q) such that flss =0

2

1.4 Ly Sel | |

(1.4) S{u 7 2} o ddt A Sf(x, 0) #o(x) dx = 0.
Q Q

Here S; =S U{x, T)|x = Q).

Remark. Condition (1.2) makes sense, Indeed, it will be shown that
¢(#) belongs to L(0, T'; HY{(Q)). So by (1.1) it follows that L) L0, T;
H71(Q)). This implies that # < C([0, T]; H }Q T ’
1.2, Ch. I). We also note that u has well o g, OE: [4]. Temma
pend continaccly ont foa 5, pésﬁf defined traces on S which de-

It was proved in [5] that the i

] : problem has at most one solut

E;g:fxd:;lfthat IAt(z)timlds, 1<p e C (Ry) and ¢(u), ¢'(#) >0 for u >0 8 KI)E
ormulate the explicit numerical i .

VT i ste e o é)m fult erical scheme associated to (1.1)—(1.3)

R,={(» t) « R¥x;, =k, h, b=Fke, k=0, 41, +2, ..., i=1, 2;
ky=0,1, ...}
where 4, v > 0 are the mesh-sizes,

wig = {(x1, X[ h<xy < (04 1)y jh < x5 < (j + 1)h}
Q, = U vy I, =09, Q,=Q, x 0, TJ.

wCQ

We shall use the same notation for the mesh-points of R, belonging to

these domains, e.g. Q, = Q, NR, etc. For brevi
S Qs B w etc. For brevity we shall also set
z Zc(h ()3 ?énggv?ﬁg[;](k) instead of U(ik, jh, kr). Now the difference problem

(1.5) Uik) = Ayp(U(k — 1)) on @,
(1.6) U(0) = tto

(1.7) Uk)lr, = #s(%, *r),'x T, k=0, 1, ..., K= [1] .

T
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Here
U(k) — Uk — 1
T
Hoh = Wo|Qys %ot Ty X {RoT, ko =0, 1, ..., K}— R,
Uy(%, B) f= (2%, 1), 2 =1,
where #* < 8Q is the nearest point to % (or one of them, if there are

more, but always the same on all levels).
In the sequel we shall denote by M a positive constant stch that

4y, %y S M. Then, of course, u, < M.
In order to compare the discrete and exact solutions we shall make

use of the following extensions:
a) Constant extension. This attaches to each function U defined on

the grid points of Q, (or ;) a step function U defined on the domain

Qs CQ (or Q) by:
Ulx, 1) = Uylk) (%, 1) e oy X Jks, (k4 Dl

b) Multilinear extension. This assigns to the grid function U a comn-
tinuous function U’ defined by :

: U :0,—~R
U'(x, £) = Uylk) + (Us(R)u(x1 — 34) + (Uss(k) (%2 — jh) +
+ (Usi(®)i(t — kv) + (UiglR)) sl — $8) (%2 — 7h) +
(Ui R aeln = i) (¢ — Bx) - (Usi(R)) e — jR)(E — k),
(%, 1) < oy X T (b + 1)l

For a detailed study of these extensions we refer to [3].
9. Basic lemmas. In [5] we proved the following two lemmas :

Iemma 2.1. Suppose that assumption (A) holds and that

- T 7
Then the solution U of (1.5) — (1.7) savisfies the inequality :
0=U=M.

Lemma 2.2. Suppose that the hypotheses of Lemma 2.1 are fulfilled

and asswme that :
() uy e C2(Q) and Aug 2'00n Q; '
(ii) wu, is mondecreasing in ¢ on 10, T[
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Then L
() Uk) 20, k=1,2, ..., K on Q
(i) 7 3 Uslk) € Mm(Q).
Ok
Here

@h = @k\{(x' K7z e ﬁh}

. Remark. Condition Au, = O can be replaced by A¢(u,) = 0. As we
have already mentioned, conditions (i), (ii) are too restrictive, we shall
therefore prove:

Lemma 2.3. Suppose that

(i) Assumption (A) holds and u, = C?(Q);
) rs1;

(i) % exists and is bounded on S ;
(iv) 9(0) = co.
Then there exist constants hy, C > 0 such that
(2.1) Yy |U;(k)| € C, for b X he.
0

Proof: Let € > 0 be a constant and V: Q — R a function such that
(2.2) AV, 2 |Ae(ug)] + ¢ on Q,
Vole 2 olug)l Vo> 0, Vo = C¥Q).

We define: vy by vy = ¢71(V,) and v, : S — ‘R as follows 1 v, 2 0, v, = C(S),
0v,/0¢ exists on S and

601
ot

where ¢ Z max |du, /0t|.
s

(%, 8) 2 c+ e ¢ e]O T[, vy(x, 0) = vylp

With the aid of v, v, as data functlons we construct by means
of the scheme (1.5)—(1.7) the discrete solution

Vi Q,— R.

Thus taking into account the above Renark we. get by Lemma 2.2 the
following inequalities

Vt_ g 0 on Qh
and :

Y Vik) 2 Mym(Q)
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For convenience weset U;(k) = U(k) andlet us show that

(2.3) YT TS Vi)

Q . Qh

Indeed by (2.2) for B < ho Dyp(ve) > 18;0(%)l- Hence according to (1.5)

we get (2.3).
Suppose now that

(2.4) Tk — 1) € S Viitk — 1)

By ol By
and prove
25) S04 € 3 Vil

£ y

From (1.5) we deduce that (¢ 2 2)
@6)  UfR) = Uk — 1) + Dyfelk — 1)) — ¢(Ulk = 2)),
consequently
(2.7) Tiglk) = (1 —4— 7 Bilk — 1)Uk + 1) +

i % (90,0 k= DTis, sk — 1) & Gicr, sk = DO,k — 1) +

3,k — Dl = 1) & (R = 1)U, j-a(k — 1)]

and similarly for V. Here @’ means an intermediary Value between
¢'(Uk — 1)) and ¢"(U(k — 2)). Foe example:

3k — 1) = ¢'(Uylk — 2) + 0(Uy(k — 1) — Usilk — 2))),

b <10, 1[.
From (2.7) we get (kB 2 1), {
)| - =3 o' (Uiytk — V) Tsk — 1
210581 = 2105k = 1) + 5 30 9Tyl — DNOyEE — 1)

STk, € 2 Visle — 1) + = 3@ (Valk — D)V —1)-

q, 3
Since volp = #plp and — a“‘ < 21 60,5 by can be taken so small that
. PY

AR

w(x, t+7) Swlx t) TS = Teld)
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in this case ) L)
Uylk — 1) € Vik — 1)jon T,
which implies
?'(Uy(k — 1)) S @'(Vis(k — 1)) on T,

Here Ujy(k — 1) = Uylk — 2) + 0(Us(k — 1) — Usj(k — &
and simijlarly for V. : : + e U”(k 2, 8210, 11

On the other hand since dv,/dt > ¢ on S it foliovslzs that
|Uij(R)| S Vij()) on T, k=0, 1, ..., K.

Hence

1

229" (Tulh = DTk — D] ST (Pilh — D)V fk — 1)

So that (2.4) implies (2.5). Finally, i . i
boundary of ( p (2.5) inally, if we observe that' on the discrete

- LIURI < VA
our lemma follows at once frbm Lemrﬁa 2.2.

Corollary. Under the hypotheses of the above lemma:
(2.8) 2 le(UR)) < C,
&

C being a constant independent of ) (and T).

This is readily seen from

lo(UR);l = 'R U(R)| s @' (M)|U;(R)

and Lemma 2.2,
In order to estimate the differences in the space variables we give :
Lemma 24. Let U:Q, >V be the solutil —

suppose that conditions of Lem);na 2.3 are fulfilled. SAP] W= e
Then there exist constants C, hy, independent of h (a"nd ) such that

52 Y T (U E) + HUE)s) < C

k=0 oF s

Jor h < h,.

3—29
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Here QF is a polygonal domain with sides parallel to Ox,, Oxy; convex
in both divections and satisfying the conditions : ‘

@) Qp C Q¥ Q*CQ
(b) The sides of 0Q} contain nodes of R,

The proof becomes identical to that of [5] (Theorem 3.1), if instead
of T,emma 2.2 we make use of Lemma 2.3.

Lemma 2.5. ([1], Theorem 2.22) Let 1 £ p < o and let K C L?(Q).
Suppose there exists a sequence }Q;} of subdomains of Q having the following
Droperties

(i) For each j, Q; C Qj+1;
(il) For each j the set, of vestrictions to Q; of the Sfunctions in K is
precompact in LP(Q;) ;

(iti) For every e >0, there exists j such that

[ 1ux)# ax < < for every u < K.
(o)A :

%

Then K is precompact in LP(Q).

3. Convergence of the numerical solution. Existence of the exact
solution. The lemmas of the previous section show that the family of
numerical solutions U (depending on h) is equibounded in inthe discrete
WYQ,) norm, ie. the scheme (1.5)—1(.7) is stable in this norm (in fact
we have shown that it is stable in in the norm of W}0, T'; Wi(L,))).
We are going now to discuss the the convergence of the discrete solution
and prove that the limit is the exact solution we are looking for. We
mention that, though our arguments refer to subsequences of approximate,
solutions, they remain valid for the whole of the sequence, in view of the
uniquenss of the exact solution.

According to the maximum principle given in T,emma 2.1, we have
00U M, 0SU £MonQ,

if U is extended in R,\ £, by any values which do not exceede M. Consequen-
+ly, both families of functions are bounded in L#(Q), 1 § ¢ § +o0. Hence
there is a subsequence of steps {#,} C {#} so that U, as well as Ui,
converge weakly to y < L*(Q), say. This limit is common as it was shown.
in [3] (see also [5], Lemma 4.3). In the sequel we shall write, for bre-
vity, U, insted of U;,”.

Using the discrete variational formulation of problem (1.5)—(1.7),
we have proved [5] the following theorems:
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rHEOREM 3.1. Suppose that U:(Q, — R is the solution of (1.5)—(1.7)

and that the subsequence U, is chosen as above. Assume that conditions of

Lemma 2.3 are fulfilled. Then for h =0
(i) ¢(Ts) — ¢(x) in L(Q), and ae. on @', VQ' C C Q
(ii) o(U,) = o(x) in LQ"), V' C CQ
() @(Ts, = 2, i =1, 2, in L¥Q), ' VCCQ

Here Q' = Q' x 10, T[, — designates the weak convergence, while & C
means the strict inclusion.

K

THEOREM 3.2. Assume that conditions of the previous theorem hold. Then
(i) » e L2(Q);

(ii) A satisfies (1.4).

From Theorem 3.1 it follows that do(x) /x; « L¥Q), 1 =1, 2. It is

also clear that 3 >0 on @ and that it satisfies condition (1.2), since
U,—y ae. on Q.

In order to show (i) it suffices to write the difference problem (1.5)—
(1.7) in the variational form (see [5], (5.1)]:

W&—Mmh—@m%mw+
Q

+ Sﬁo(x) (x, 0)dx =0, ¢ « D([0, T[ x Q)
fo}

and pass to the limit.

THEOREM 3.3. Suppose that w is the solution of problem (1.1)—(1.3).
Then ¢(U), = ¢(#) in L(Q). The same is true for Uy,

Proof. Consider a sequence of subomains @; as in Lemma 2.5. Suppose
K = {o(U,)}, (or ¢(U})), then according to Lemmas 2.3 and 2.4. this is equi-
bounded . in W}Q,) and precompact in L(Q,) for any j. On the other
hand by Lemma 2.1 K is bounded by the constant M independent of j
on any point of Q. Thus all conditions of Lemma 2.5 are fulfilled, which
completes the proof.

Remark. Since the imbeddking

Wi@) — L*(Q)

is compact, according to the Rellich-Kondrashov theorem, for any q such that

1 29<2

(in- our particular case n.= 2) the comvergence from the above theorem takes
place in any LUQ), 1 £ g < 2.
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