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1. Introduetion

The set of dynamical systems may be organized in many ways in
categories according to the set of morphisms that one chooses (see [4]).
Corresponding, one obtains many types of isomorphisms between dyna-
mical systems, the most important being: the NS-isomorphism (isomor-
phism of Nemytskii-Stepanov type) and the GH-isomorphism (isomorphism
of GCottschalk-Hedlund type). One considers [8] that it is impossible
to find an effective method by which to decide if two dynamical systems
are isomorphic, that is ,the equivalence problem” is unsolvable. How-
ever, the problem was much studied yielding some partial answers. So
is the result of 1. MarxuUs in [7] what contains a necessary and suffi-
cient condition for two dynamical systems in the plane to be NS-isomor-
phic. His method of ,,Separatrices” was generalized to dynamical sys-
tems defined on general metric spaces by himself in [9] and by N. P. BHATIA
and 1. M. FRANKLIN in [2], but with less success. Another approach to
the problem was done by I, N. VRUBLEVSKAYA in [14] who uses a rela-
tion of equivalence among the trajectories of a dynamical system, rela-
tion defined by a kind of ,regular deformation”.

In this paper we propose a method similar to that of Vrublevskaya
but based on a simpler definition of the deformation. For this we use
the Pompeiu-Hausdorff metric in the case of the NS-isomorphism and a
similar one in the case of the GH-isomorphism. This second metric we
defined for the set of continuous functions between two metric spaces
in [11] and have used then in a problem of dynamical systems in [121.
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2. Basie notations and definitions

Let X be a metric space with a fixed metric 4 = dy. For a € X,
r >0 and 4 C X we denote by:

(1) d(a, A) = inf {d(a, x); x € A}
the distance from a to 4 and by:
(2) Via,r)={x € X; d(a, x) <r}

the ball of radius » and center . For a function f: X—Y and a set
AU X we denote:

3) f(4) ={f(x); x = 4}

Definition 1. A dynamical system on X is a continuous function
n: X X R— X that satisfies the following axioms:

(i) n(%,0) = %, for every x in X;

(ii) wn(rn(x,t),s) = w(x,¢t +s), for x in X, ¢ and s in R.
Definition 2. For any x € X one defines:
a) the motion (through x) n,: R—~X by:

(4) T (t) = n(%,1);
b) the trajectory of x by:

) v(%) = {=(%,2); t = R};
c) the positive limit set of x by:

(6) LH(x) ={y € X, 3}, >+ o0, n(,1,)>y}.
Definition 3. A point x € X (and its trajectory) is said fo be:

a) critical, if y(x) = {x};

b) periodic if there is a p# 0, such that n(x, t + p) = w(x,t) for all
t = R;

c) Lagrange stable, if y(x) is relatiwely compact;

d) positively Poisson stable, if x = L*(x);

e) e-stable (in the sense of M, BERTOLINO [1]) if any e-neighbourhood
of y(x) comtains at least a trajectory distinct of y(x).

Definition 4. Lt & and o be dynamical systems on X respecti-
vely on Y. They are NS-isomorphic (respectively GH-isomorphic) ¢f there
exists a homeomorphism h: X—Y, which preserves trajectories, that is:

() v(A(x)) = h{y(x)), for all ¥ € X
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(respectively which makes commutative the following diagram :

Xx R—Z-X
8) ‘hxlk lh
Y x R—=2-Y
that is:
(89 hm(x, 1)) = o(h(%),1), for all x € X and ¢  R).

In what follows we shall use the set I = [0, 1] and the function
A: [0, 0]— I defined by:

L for t e [0, )
©) M =1+

1 for t = o0

On the set of non-empty subsets of X we shall use the premetric
P of Pompeiu-Hausdorff [6] defined for any M, NCX by:

(10) P(M, N) = Nsup {sup {d(x,N); x € M}, sup {d(y,M); y = N}}).

Let C(R,X) be the set of all continuous functions from R to X.
We need several metrices for C(R, X):
a) the uniform metric T, defined by:

(11) T(fg) = » (sup {d(f(t), g#)); ¢ € RY), for any [, g < C(R, X);
b) the metric K, which generates the compact — open topology,
defined by:

(12) K(f.g) = i:l 27 Mmax {d(f(t), g@®); Il < 7});
c) the metric S, of Pompein — Hausdorff type, which we defined
in [11] by:
(13) S(f, g) = Msup {So(f, &), Sl /)3),
whete
(13)  So(f, &) =inf{r > 0; V¢ = R, inf {d(f(}), g(8)); It — s} <7} <7},

with the usual convention: inf ¢ = 0.
It is easy to check that for any f,g € C(R, X):

(14) K(f, g) < T(f, & and S(/, &)< T(/. g)
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and, as we proved in [11], the identity function:
1: (C(R, X), S)— (C(R, X), K)

is continuous.

If it is necessary, we indicate by a lower index the space used in
the definition of a certain metric (for exemple Py).

3. Conditions for NS — isomerphism

Let X and Y be two metric spaces, and = and ¢ two dynamical
systems on X respectively on Y. For theirs NS-isomorphism the two
families of trajectories (of m and of o) must correspond each to other
by a homeomorphism /4:X—Y. But the families being infinite, it is
difficult to check this correspondence. Thus it is natural to look for
criterions which contains simpler conditions, at least necessary, for equi-
valence. We begin with some more general considerations.

On any family of subsets of X we consider the premetric P defined
by (10). Let U be such a family.

Definition 5 We say that two sets M,N C X are U-equivalent
(and denote by M ~ N (rel U)) if there exists a continuous function h:
I—U such that h(0) = M and h(l) = N.

Remark 1. It is easy to verify that U-equivalence is an equivalence
relation, hence it induces a partition of U. We denote the equivalence

class of M by M and the quotient space by 0.

Lemma 1. If U and W are families of subsets of X respectively
Y, then any continuous function F: U-—> W defines a continuous function

B0 W by Pl = ).

Proof. 1t is obvious that M ~ N (rel U) implies F(M) ~ F(N)(rel
W) so that F is well defined. Using the continuous canonical projections
i:U—U and jrW— W we obtain the following diagram :

F

U - W
[ 00
oL W

From his commutativity results the continuity of F because j o F is con-
tinuous (see [5]). .
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Lemma 2 If f: X—Y is a uniform continuous function with the
property that f(M) € W for any M € U then the induced function f: U—
— W 1s continuous.

Proof. We proceed by contradiction. Let us suppose that there exists
a convergent sequence M,— M such that f(M,) -~ f(M), that is one can
find a » > O such that for any », there exists # > n, for what Py(f(M,),
f(M)) > r. There are two possibilities:

a) sup {dy(f(x), f(M)); x € M, }>7

b) sup {dy(f(M.), f(3); ¥ € M}>7,
for some #, —~oco. In the first case, for any & one can find a Xy, € M“k
such that:

(15) dy(f(%4,), f(x)) > 7, for any x € M.

But f being uniformly continuous there exists a s > 0, such that dx(x,y) <
< s implies dy(f(x), f(y)) <7, and because M, — M one can find a %,
with the property that for & > k,, PX(M.,k, M) < s. For such a k, there
exists y, € M with dx(%, , y,) <s, hence dy(f(%4,), f(3)) < 7 which contra-
dicts (15). In the case b) one fall on a similar contradiction using only
the simple continuity of f.

Consequence 1. Let X and Y be compact metric spaces, U and
W families of subsets of X wespectively Y. If f(M) € W for any M = U

and fN) € U for any N « W, then the induced function f: U—~W is
a homeomorphism. _
Tet us apply these results to dynamical systems. For.a dynamical
system m on X we denote by I'm the family of all trajecton.es. How one
knows [3], 'z is a partition of X and we consider on it, as befpre,
the premetric P of Pompeiu — Hausdorff and the corresponding equiva-
lence relation which we name in this case y-equivalence. One obtains

»

the quotient space T'x and the following :

THEOREM 1. If the dynamical systems m and o defined on the compact ;
metric spaces X vespectively Y are NS-isomorphic, then the corresponding
quotient spaces I'm and T'c are homeomorphic.

Remark 2. This condition is not sufficient for NS-isomorphism how
shows the following :

Exemple 1. Tet X =Y ={(v,9) € R?; #? 4 »*< 3} as subspaces
of R2. The dynamical systems defined by autonomous differential equations
(in polar coordinates) :

o=rplp— 1)(p—3);

) b=1
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and
) e(l — p) if 0<p<l;
( lp'-: 0 if1<€p<2;
9) l (0 —2)(p—3) if 2<p <3;
b=1.

are not NS-isomorphic although the quotient spaces I'r and I'c are homeo-
morphic.
As concerns the equivalence classes, we have the following:

THEOREM 2. If the dynamical system w is defined on a complet, locally
compact metric space X, then the class of y-equivalence of a Lagrange stable
trajectory contains only Lagrange stable trajectovies.

.Pyoof. Let v, be a Lagrange stable trajectory, v, ~ ¥, and h: I—Tn
continuous and such that A(0) = vo, #(1) =v;. Denote by J={t €I,
h(f) is Lagrange stable}. Of course 0 € J, that is J#@. Let ¢, € J. The

space X being locally compact and A(¢,) compact, h(t,) has a compact
neighbourhood, that is J is open in I. But J is also closed in I. Indeed,

if we suppose the contrary, there exists a sequence (¢,) in J which has

a limit point f, & J. That is A{f,) is not compact, ie. it contains a
sequence (,) which has no convergent subsequence. As h(t,)— h(ty) we
have also A(t,)— h(t,) (in the topology induced by the premetric P on
the set of subsets of X). If (ep) is a sequence of strictly positive num-
bers, then for every p, there is a natural number N, such that m > N,

implies P(h(t,), hlts) < Eﬁ . Let m;> N, and % € hf,,) such that d(ya, %,) <

%t for any #. Because A(t,,) is compact, there is a subsequence (y},k)

< —

3

of (yn) which is convergent. We may assume that d(y}.k, y,l,l) < 3 for
3

any k and I. Denoting %,, by xi, we obtain the subsequence (x3) of (%)

such that d(x}, %) < ¢, for any k and I Step by step, for p = 2,1 3N
we obtain the sequence (x) such that d(x%, «f) < e, for any k and /,
(x5) being subsequence of (xﬁ_l). So (%)) is a Cauchy sequence and,
X being complet, it is a convergent subsequence of (#,) in contradiction
with the assumption. After all, J =1, thatis v, is Tagrange stable.

Exemple 2. Let X = R* — {(0,0)} with the usual Euclidean metric
and 7 the dynamical system generated by the differential system :

{9‘6=x(x—1)
y=0
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Then the Iagrange stable trajectory {(x,1); 0 <x <1} is y-equivalent
with the trajectory {(x,0); 0 <x <1} which is not Lagrange stable,
that is the theorem is not true if one remounces at completness.

ILemma 3. If the class of y-equivalence of a critical point x is not
a singleton, then x is e-stable.

The condition is not sufficient as shows the following :

Exemple 3. In the dynamical system generated by the differential
system (in polar coordinates)

I. pSinl,fOI‘p#O;
p= °

l 0 , for p=0;
h=1; '

the origin is an e-stable critical point whose class of y-equivalence 1s a
singleton.

4. Conditions for GH — isomorphism

For GH-isomorphism one can apply the theorem 1 because the GH-
isomorphism of two dynamical systems implies theirs N S-isomorphism
(the whole relation between them may be found in [13]). But we look
for stronger criterions, specific to GH-isomorphism.

For a dynamical system = on X, let us consider the space of motions:

IMI={r,,; < X}
and the map w*: X— Il defined by:
(16) mH(x) = m,

Taking on Il the compact-open topology, generated by the metric K,
by the theorem of Fox [6], =* is continuous. But attempting to intro-
duce an equivalence relation on II (with the metric K), as we did in
I'z, one obtain a triviality, namely the following result: a continuous
map h:I—T with the property that #(0) = =, and k(1) == exists
iff there is a continuous map f: I—X such that f(0) = x and f(l) = 9.
The use of the metric T for II produces other difficulties. For exemple,
two motions on the same trajectory may be not equivalent, as shows
the following :

Exemple 4. Let © be a dynamical system on R defined by =(x,?) =
=% -exp (f). If x#y we have:

T(r,, m,) = Msup {|l¥ — | exp ()); { € R}) =1,
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that is no motion is equivalent with another (taking the metric T for
the space of motions).

In what follows we shall use only the metric S for II, trying to
avoid these difficulties. With this convention we give the following :

Definition 6. We say that two motions n, and m, are Il-equiva-
lent (and denote by w, ~ w,) if there exists a continuous Sunction h: I—
— 1L, such that W0) = n, and h(l) = -

As above we denote the class of II-equivalence of r, by T?x and the
quotient space II/_by II.

Lemma 4. If y(x) = y(y), then m, ~ =,
Proof. By the hypothesis y = m(x, s) with some s < R. Definig 4:
I—1I by
h(t) = Tore(x,0s)
it is continuous because

S(h(t,), hts)) < Jby — 1) - Is]

and A(0) = m,, h(l) ==, that is =, ~ =,

Remark 2. Thus S is more useful than the metric T, Also, generally
it induces not trivial quotient spaces. For example, at the dynamical
system appearing in exemple 4, one obtain three IT-equivalence classes
(upon the sign of x).

Now, let us study some particular classes of motions. First of all
we remark that the map j:Il—I'n defined by j(r) = v(%x), is conti-
nuous, because P(y(#), y(¥)) < S(r,, =,). Thus every class of II-equi-
valence is ,,contained’ in a class of y-equivalence. So, for IT-equivalence
hold properties analogous with those contained in the theorem 2 and
in the lemma 3. Also we have:

Lemma 5. The set of motions positively Poisson stable is closed
in II1.

Pyoof. Let the motions ™, Ppositively Poisson stable and m, such
that S(-n:x”, n,)—0 for n— co. Thus, for any natural p there is a m, such
that :

(17) Sl < o
Le. for some s, [sp] < 1/3p we have d(x, “(x”p‘ 5)) <1/3 p. But, Xn,
being positively Poisson stable so is n(x,.#, sp), thus one may find a
tp > p + 1, such that d("(x“p' Sp), -.-r(x,,ﬁ, Sp + &) < 1/3p. By (17) there
is a 7, such that [sy4#,—1,| < 1/3p and d(n(x,,p, Sp+tp), T(%, 7)) <1/3p.
Finally, for any p we found a Tp > p such that: d(x, n(x, 7)) < 1/p
that is m, is positively Poisson stable.

By the theorem of Poincaré-Bendixon [10] we have the following :
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Consequence 2. For a dynamical system on the plane, the set of
periodic motions is closed in IL.

Definition 7. The function f: R—X has e-period © of for any,
t e R, dfit +1), ft) <e

) rodic motion T,

emma 6. If the class of Il-equivalence of a perio ) \

with Lperiod , con{;ms a motion which do not pass through x,, thenhjfo;;
every e > 0 there is a wmotion, whose trajectory do not contain x,, whic

-peri and such that S(m,, m,) <e. _
e ;f::;oi;c e > 0 fixed. Because :c:,n is uniformly continuous on [—1,

i . 1 1
© 4 1], thereisa § > 0, 8<m1n{§, —4—}, such that for any s € [
v+ 1], with |t —s| < 48, we have:

(18) d(rm(x,, 1), m(%,, ) <§.

i i 8 and () # %,
hypothesis, there is a ¥ € X such that S(m, w,) < 3
E)}rf ai?})rot e R. Thus for any ¢t € R, there is a Sp [s, — #| <28 such
that d(m(x,t), m(%, s)) <23. So we have succesively:

Istee — (s + O Sege — E+ D+ 15, — 2 < 43
and, denoting s,,. = nt 4 t,, with £, € [0, 1), #n = Z:
[Sp40 — w7 — (5, + 7 — n7)| < 49,

hence Sipe — 07, S, + (1 —n) € [—1, v+ 1]
and by (18):

d(m(%or Sre), T(Hg, §)) = d(m(%o, Stqe — #7), T(%o, 5, + (1 — m)7)) < ¢f3.
Finally : |

d(ﬂ"(x:t I T)' ﬂ(%,t)) < d(ﬁ(x:t n T): n(xfb st+1‘)) + d(ﬂ(xm SH—T)l n(xﬁ! S‘))—-l-

+ d("r(xm 3'), TC(x, t)) < 28 + % + 28 < g, b

thus 7, satisfies all the expected conditions. .
5 ; ) 3 Iy comtinuous, them so
Lemma 7. If the map h: X—Y 1s umfomzy
is also the map h*:C(R,X)—C(R,Y) defined by:
(19) (B*(f)E) = B[ ()
(using the metric S for the spaces of continuous functions).

i ith the property
Proof. For any £ > 0 there is a 3, 0 <3 < ¢, wit
that dX'(é,y) < 8 implies d (h(%), h(y)) <e If f,g € C(R, X) are such



108 GH, TOADER
10

that Sy(f,g) < §, then for any ¢ € R there j
. ’ ’ eisas &R )
th <8 and dy(f(t), g(s)) < 5. Hence: f such that [s, —

min {2y (A(/(2)), Me(s)); Is —t < e} < min {dy(h(/(®)
Me)): Is — 8] < 8} < dy(h(f(2), hlg(sy)) < e.

Changing the role of f and g we get SylB*(f), h*(g)) < .

THEOREM 3. Let = and o be dynamical s )
_ ' ystems on compact met
f\;baces XArespectwely Y. If they are GH-isomorphic, then the quogent s;a’c/jzg

Il and X of classes of equivalent motions are homeomorphic.
Proof. We have the following diagram :

’

XXR—T . x_ ™ qmq__*t_ .
hx 1, 'h Bk

Yl a l 0’* l . pS
X R Y > 7 b

il
| %
)

where the first rectangle is from the GH-i i
t -isomorphism of =« and &
and ¢* are defined by (16), 7* by (19), i and 4§ are canomnical projecct;;,iogs

in quotient spaces and % is defined by:

AN ~

h(Wx) = On(x)

From the continuity of A* one ded inui 7
e ~of h*, educes (see [5]) the continuity of .
h31_f1n15h the proof it is enough to repeat the above considerations for

. n()t S 5‘

Remark 4. As in the case of NS-isomorphism, the condition from

theorem 3 i i - :
wing : s'mot sufficient - for GH-isomorphism, how shows the follo-

Exemple 5. TLet © and ¢ be dynamical } .
ferential systems (in polar coordinZteS) :Ca systems defined by the dif-

(x) E 0 i fple
§y (p<1
(o) fie-=9 <1
The 'systems are N S-ism,{lorphic but not GH-isomorphic, although the
quotient spaces Il and X are homeomorphic being singletons,

11 CLASSIFICATION OF DYNAMICAL SYSTEMS 109

Remark 5. The condition from theorem 3 is actually stronger than
that of theorem 1, and a class of Il-equivalence may be properly ,,con-
tained”’ in a class of y-equivalence, as shows the following:

Exemple 6. Let ¢ be defined as above by:

(o) {f’=0 L e< 1
0= 6p

One obtaine a single class of y-equivalence but two motions on different
trajectories are not Il-equivalent. Thus ¢ is NS-isomorphic with the
dynamical system = from exemple 5 but is not GH-isomorphic with

it.
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