MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 8, No 1, 1979, pp. 27-31 The state of the second st

ON APPROXIMATE SOLVING BY SEQUENCES THE EQUATIONS IN BANACH SPACES

 $\lambda = m \text{ talks}$ (-1, 0, -1, 0, -1, 0, -1, 0) (-1, 0, -1, 0, 0, 0, 0, 0)

BALÁZS M. and GOLDNER G. (Cluj-Napoca)

Let X be a Banach space, Y a linear normed space, and the equation

$$(1) P(x) = \theta,$$

where $P: X \to Y$ is a continuous mapping, and θ is the null element of Y. We consider a sequence (x_n) of elements of X and a positive integer s.

DEFINITION 1. [4]. The sequence (x_n) has the order s with respect to the mapping P, iff there exists a positive number α which does not depend on n so that

$$||P(x_{n+1})|| \leq \alpha ||P(x_n)||^s$$
 for $n = 0, 1, 2, ...$

DEFINITION 2. [4] The sequence (x_n) is convergent of the order s with respect to the mapping P iff (x_n) has the order s with respect to the mapping P and it is convergent.

In the present paper we study sufficient conditions on the mapping P and the sequence (x_n) , for the convergence of the order s with respect to the mapping \tilde{P} of the sequence (x_n) , so that the limit x^* of the sequence (x_n) is a solution of the equation (1). Further on we shall suppose that $s \ge 2$.

THEOREM. If the mapping P, the sequence (x_n) and the number $\delta > 0$ satisfy, in the sphere $S(x_0, \dot{\delta}) = \{x : ||x - x_0|| \leq \delta\}$, the following conditions:

(i)
$$\sup \{||[u_1, u_2, \ldots, u_{s+1}; P]|| : u_1, u_2, \ldots, u_{s+1} \in S(x_0, \delta)\} \leq M < +\infty,$$

2

3

where $[u_1, u_2, \ldots, u_{s+1}; P]$ is the divided difference of the s-th order of the mapping P in the different points $u_1, u_2, \ldots, u_{s+1}$ [1], [2], [5];

(ii) there exist the points x_{-s+1} , x_{-s+2} , ..., $x_{-1} \in S(x_0, \delta)$ and a positive number A which does not depend on n so that

$$||P(x_{n-s+1}) + \sum_{j=2}^{s} [x_{n-s+1}, x_{n-s+2}, \dots, x_{n-s+j}; P] \times (x_{n+1} - x_{n-s+j-1})$$

$$(x_{n+1} - x_{n-s+j-2}) \dots (x_{n+1} - x_{n-s+1})|| \leq ||P(x_n)||^{s}$$

for $n = 0, 1, 2, ... (x_n \in S(x_0, \delta))$;

(iii) there is a positive B which does not depend on n and k, so that

$$||x_{n+1} - x_k|| \leq B||P(x_n)||$$

for $n = 0, 1, 2, \ldots$ and $k = -s + 1, -s + 2, \ldots, 0, 1, \ldots$ with $n \ge k$;

(iv)
$$h_0 = ||P(x_0)||(A + MB^s)^{\frac{1}{s-1}} = \eta_0 \cdot v < 1,$$

$$\frac{B \cdot h_0}{v(1 - h_0)} \leq \delta;$$

then

(j) the sequence (x_n) is convergent of the order s with respect to the mapping P, and $x^* = \lim_{n \to \infty} x_n$ is a solution of the equation (1), i.e. $P(x^*) = \theta$;

(jj)
$$x^* \in S(x_0, \delta)$$
;

(jjj)
$$||x_{n+1}-x_n|| \leq \frac{Bh_0^{s^n}}{n}$$
 for $n=0, 1, \ldots$;

(jv)
$$||x^* - x_n|| \le \frac{Bh_0^{s^n}}{v(1 - h_0^{s^n})}$$
 for $n = 0, 1, ...;$

(v)
$$||P(x_n)|| \le \frac{h_0^{s^n}}{v}$$
 for $n = 0, 1, \ldots$;

Proof. First we prove by induction the following relations

(2)
$$x_i \in S, i = 1, 2, ...;$$

(3)
$$||x_i - x_{i-1}|| \leq \frac{B}{v} h_0^{s^{i-1}}, i = 1, 2, \ldots;$$

$$(4) ||P(x_i)|| \leq v^{s-1}||P(x_{i-1})||, i = 1, 2, \ldots$$

a) For n = k = 0, (iii) gives from the second (ii) growth k = 0

$$||x_1 - x_0|| \leqslant B||P(x_0)|| = \frac{Bv||P(x_0)||}{v} = \frac{Bh_0}{v} \leqslant \frac{Bh_0}{1 - h_0} \leqslant \delta,$$

which means that (2) and (3) hold for i = 1.

By (ii) we have for n = 0.

$$||P(x_{1})|| \leq ||P(x_{1}) - [P(x_{-s+1}) + \sum_{j=2}^{s} [x_{-s+1}, x_{-s+2}, ..., x_{-s+j}; P](x_{1} - x_{-s+j-1})(x_{1} - x_{-s+j+2}) ... (x_{1} - x_{-s+1})]|| +$$

$$+ ||P(x_{-s+1}) + \sum_{j=2}^{s} [x_{-s+1}, x_{-s+2}, ..., x_{-s+k}; P](x_{1} - x_{-s+j+1}) ... (x_{1} - x_{-s+1})|| \leq$$

$$\leq ||[x_{-s+1}, x_{-s+2}, ..., x_{-1}, x_{0}, x_{1}; P]|| + A||P(x_{0})||^{s} \leq$$

$$\leq M \cdot B^{s} ||P(x_{0})||B^{s} + A||P(x_{0})||^{s} = ||P(x_{0})||^{s} (A + M \cdot B^{s}) =$$

$$= ||P(x_0)||^s \Big[(A + MB^s)^{\frac{1}{s-1}} \Big]^{s-1} = ||P(x_0)||^s v^{s-1},$$

i.e. for i = 1 (jv) is also true. Hence the relations (2) - (4) are verified for i = 1.

b) We suppose that the relations (2) - (4) are satisfied for a fixed i > 1.

c) We prove that the relations (2) - (4) are verified for i+1. Multiplying booth members of the inequality (4) by v, it results

(5)
$$h_{i} = v||P(x_{i})|| \leq v^{s}||P(x_{i-1})||^{s} = (v||P(x_{i-1})||)^{s} \leq (v^{s}||P(x_{i-2})||^{s})^{s} = (v||P(x_{i-2})||)^{s^{s}} \leq \dots (v||P(x_{0})||)^{s^{i}} = h_{0}^{s^{i}}.$$

From (iii) we obtain for n = k = i

$$||x_{i+1}-x_i|| \leq B||P(x_i)|| = \frac{Bv||P(x_i)||}{v} = \frac{Bh_0^{s^i}}{v},$$

i.e. (3) is true for i+1. We have

$$||x_{i+1} - x_0|| \le ||x_{i+1} - x_i|| + ||x_i - x_{i+1}|| + \dots + ||x_1 - x_0|| \le$$

$$\le \frac{B}{v} \left(h_0^{s^i} + h_0^{s^{i-1}} + \dots + h_0^s + h_0 \right) \le$$

$$\le \frac{B}{v} \left(h_0 + h_0^2 + \dots + h^i + \dots \right) = \frac{Bh_0}{v(1 - h_0)} = \delta$$

which shows that $x_{i+1} \in S(x_0, \delta)$.

Using (ii) for n = i, we can write

$$||P(x_{i+1})|| \le ||P(x_{i+1}) - |P(x_{i-s+1})||$$

$$+\sum_{j=2}^{s} [x_{i-s+1}, x_{i-s+2}, \ldots, x_{i-s+j}; P](x_{i+1} - x_{i-s+j-1})(x_{i+1} - x_{i-s+j+2}) \ldots$$

...
$$(x_{i+1}-x_{i-s+1})$$
 $+$ $P(x_{i-s+1}) +$

$$+ \sum_{j=2}^{s} [x_{i-s+1}, x_{i-s+2}, \ldots, x_{i-s+j}; P](x_{i+1} - x_{i-s+j-1})(x_{i+1} - x_{i-s+j-2}) \ldots$$

$$\left\| (x_{i+1} - x_{i-s+1}) \right\| \leqslant A ||P(x_i)||^s + M B^s ||P(x_i)||^s =$$

$$= ||P(x_i)||^s (A + M B^s) = v^{s-1} ||P(x_i)||,$$

hence (4) is true for i+1.

In conclusion the relations (2) — (4) hold for all the positive integers. The property (4) shows that the sequence (x_n) has the order s with respect to the mapping P.

Now we prove that the sequence (x_n) is a Cauchy-sequence, hence it is convergent.

Using (3) we have

(6)
$$||x_{n+p} - x_n|| \leq ||x_{n+p} - x_{n+p-1}|| + \dots + ||x_{n+1} - x_n|| \leq \frac{B}{v} \left(h_0^{s^n} + h_0^{s^{n+1}} + \dots + h_0^{s^{n+p}} \right) \leq \frac{B}{v} h_0^{s^n} (1 + h_0^s + h_0^{2s} + \dots) = \frac{B h_0^{s^n}}{v (1 - h_0^{s^n})},$$

hence

$$\lim_{n\to\infty} ||x_{n+p} - x_n|| = 0$$

for every $p \in \mathbb{N}$, i.e. (x_n) is a Cauchy — sequence, and x being a Banach space the sequence (x_n) is convergent.

For $p \to \infty$ in the inequality (6) we obtain (jv). Also from (6) we obtain

(jjj) puting p = 1.

puting p = 1. From (2) it results that $x^* \in S(s_0, \delta)$.

For i = n (5) implies

$$||P(x_n)|| \leqslant \frac{h_0^{s^n}}{v}, \qquad ||P(x_n)|| \leqslant \frac{h_0^{s^n}}{v}$$

which shows that you a virt a virt a

i.e. the relation (v) holds.

For proving the fact that x^* is a solution of the equation (1), in (v) we make $n \to \infty$, and so we obtain $(0 < h_0 < 1)$

$$\lim_{n\to\infty}||P(x_n)||=0,$$

hence $\lim P(x_n) = P(x^*) = \theta$.

Remark. If P is Fréchet-differentiable, choosing the divided difference for which [x, x; P] = P'(x), [3] we can reobtain the results of the paper [4].

[1] Balázs, M., Contribution to the Study of Solving the Equations in Banach Spaces. Doctor Thesis, Cluj, (1969).

[2] Balázs, M., Goldner, G., Diferențe divizate în spații Banach și unele aplicații ale lor (Roumanian) Stud. si Cercet. Mat. 7, 21, 985-996 (1969).

[3] Balázs, M., Goldner G., On Existence of the Divided Difference in Linear Spaces. Rev. Anal. Num. Théor. Approx. (Cluj) -2, 5-9 (1973).

[4] Păvăloiu, I., Sur l'Approximation des Solutions des Équations à l'Aide des Suites à Éléments dans un Espace de-Banach. Rev. Anal. Num. Théor. Approx. (Cluj-Napoca) 5, 63-67 (1976).

[5] U1m, S., On Generalized Divided Differences, I-II, (Russian). Izv. Akad. Nauk, E.S.S.R., 16, 13-26, and 146-155 (1967).

the late the first the store that the second second

the property of the control of the c