MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 8, No 1, 1979, pp. 49-52 V mounth's a Franch, for early a Countries of

A FIXED POINT THEOREM FOR MULTIVALUED MAPPINGS IN RANDOM NORMED SPACES of all the policy streng Material Webystorff mond Review II and matter as

TRUE TEACH REE BLANK - AN OLGA HADŽIĆ SAN LES RUSYMAR ZEDMINISTED

(Novi Sad)

In this paper we shall prove a fixed point theorem for multivalued mappings in a complete random normed space (S, F, t) with continuous T-norm t. The notion of random normed space was introduced by SERSTNEV [5] and in [1] some fixed point theorems in random normed spaces are proved. First we shall give some definitions and theorems which we shall use in the later.

Let S be a real or complex linear space and Δ^+ be the set of all distribution functions F such that F(0) = 0. A random normed space is an ordered triple (S, \mathcal{F}, t) , where t is a T-norm stronger than $T_m: T_m(u, v) = \max\{u + v - 1, 0\}$ and \mathcal{F} is a mapping of S into Δ^+ so that the following conditions are satisfied: (we shall denote $\mathcal{F}(p)$ by F_p)

1. $F_p = H \Leftrightarrow p = 0$ (0 is the neutral element in S)

2. $F_{\lambda p}(x) = F_p\left(\frac{x}{|\lambda|}\right)$ for every $p \in S$, $x \in \mathbb{R}$ and $\lambda \in K \setminus \{0\}$ where K

is the scalar field.

3. $F_{p+q}(x+y) \geqslant t(F_p(x), F_q(y))$, for every $p, q \in S$ and every

The (ε, λ) -topology in (S, \mathcal{F}, t) is introduced by the family of (ε, λ) neighbourhoods of $v \in S$: $U_{v}(arepsilon,\,\lambda)=\{u|u\in S,\,F_{u-v}(arepsilon)>1-\lambda\},$

$$U_{v}(\varepsilon, \lambda) = \{u | u \in S, F_{u-v}(\varepsilon) > 1 - \lambda\},$$

where $\varepsilon > 0$ and $\lambda \in (0, 1)$ and if T-norm t is continuous then S is, in the (ε, λ)-topology, a Hausdorff linear topological space.

Every random normed space is a Menger space [4] if we take $F_{u,v} =$ $=F_{u-v}$, for every $u, v \in S$. In [4] the following theorem is proved.

^{4 --} Mathematica -- Revue d'analyse numérique et de théorie de l'approximation -- Tome 8, Nr. 1/1979

50

3

THEOREM A. Let (S, \mathcal{F}, t) be a complete Menger space with continuous T-norm t, A be a closed subset of S and $H: A \rightarrow A$ such that:

(1) $F_{Hp,Hq}(kx) \geqslant F_{p,q}(x)$, for every x > 0 and every $p, q \in S$,

where $k \in (0, 1)$. If there exists $p_0 \in A$ such that:

(2)
$$\sup_{x} G_{p_0}(x) = 1, \text{ where } G_{p_0}(x) = \inf \{ F_{p_n - p_0}(x) | n \in \mathbb{N} \}$$

and $p_n = Hp_{n-1}$ for every $n \in N$, then there exists one and only one fixed point p of the mapping H and $p = \lim_{n \to \infty} p_n$.

By $\mathfrak{A}(M)$ we denote the family of all nonempty, closed and convex subsets of M, where M is a subset of a topological vector space. In [2] the following theorem is proved.

THEOREM B. Let E be a Hausdorff topological vector space, M be a nonempty, convex and compact subset of E, $\Phi: M \to \Re(M)$ be an upper semicontinuous mapping such that for every $y \in M$ the set:

$$\Phi^{-1} y = \{x | y \in \Phi x\}$$

is open. Then there exists at least one fixed point of the mapping Φ .

Now, we shall prove a fixed point theorem for mapping $H+\Phi$ where H is a singlevalued and Φ is a multivalued mapping.

THEOREM. Let (S, \mathcal{F}, t) be a complete random normed space with continuous T-norm t, M be a nonempty, convex and compact subset of S, H be an affine mapping from M into S such that:

(3)
$$F_{H(x_1)-H(x_2)}(k\varepsilon) \geqslant F_{x_1-x_2}(\varepsilon) \text{ for every } x_1, x_2 \in M$$

and every $\varepsilon > 0$, where $k \in (0, 1]$ and $\Phi: M \to \Re(S)$ be an upper semicontinuous mapping such that $HM + \Phi M \subseteq M$ and the set Φ^{-1} y is open for every $y \in S$. Then there exists at least one fixed point of the mapping $H + \Phi$.

Proof: First, we shall suppose that $k \in (0, 1)$. For every $y \in \overline{\Phi(M)}$ we shall define the mapping $G_v: M \to M$ in the following way:

$$G_{y}(x) = Hx + y$$
, for every $x \in M$.

Using the inequality (3) we conclude that:

$$F_{G_n(x_1)-G_n(x_2)}(k\varepsilon) \geqslant F_{x_1-x_2}(\varepsilon)$$
, for every $y \in \overline{\Phi(M)}$

every x_1 , $x_2 \in M$ and every $\varepsilon > 0$. Since T-norm t is continuous, S is a Hausdorff topological linear space and so it follows that the compact set M is bounded which means that for every neighbourhood V of zero

there exists $\delta>0$ such that $M\subseteq \delta V$. If $V=\{x|F_x(\epsilon)>1-\lambda\}$ we obtain that $\frac{x}{x}\in V$ i.e. that:

$$F_x(\varepsilon) > 1 - \lambda$$
 for every $x \in M$

and so $F_{x}(\delta\varepsilon) > 1 - \lambda^{\delta}$ for every $x \in M$. From this it follows that the condition (2) is satisfied. Now, from Theorem A it follows that for every $y \in \overline{\Phi(M)}$ there exists one and only one fixed point Ry of the mapping G_{y} and so Ry = HRy + y for every $y \in \overline{\Phi(M)}$. Let us prove that the mapping $R: y \to Ry$ is continuous. Suppose that $\lim_{n \to \infty} y_n = y$ $(y_n, y \in \overline{\Phi(M)})$ and let us show that $\lim_{n \to \infty} Ry_n = Ry$. Since $R: \overline{\Phi(M)} \to M$ and M is compact it follows that there exists a subsequence $\{y_{n(k)}\}_{k \in N}$ such that $\lim_{k \to \infty} Ry_{n(k)} = y^*$. Then from $Ry_{n(k)} = HR(y_{n(k)}) + y_{n(k)}$ we have:

$$y^* = Hy^* + y$$

and since the equation z = Hz + y has one and only one solution Ry, we have $Ry = y^*$. Since every subsequence of the sequence $\{Ry_n\}$ has a convergent subsequence with the limit Ry we have that the mapping R is continuous. Further, we shall define the mapping $R^*: M \to 2^M$ in the following way: $R^*x = \bigcup_{y \in \Phi x} Ry$ for every $x \in M$. It is obvious that the mapping R^* is upper semicontinuous and we shall prove that R^*x is convex set, for every $x \in M$. Using the fact that mapping H is affine for every α , $\beta \ge 0$ $\alpha + \beta = 1$ we have:

(4)
$$R(\alpha y_1 + \beta y_2) = \alpha R y_1 + \beta R y_2 \text{ for every } y_1, y_2 \in \Phi x.$$

So from the fact that Φx is convex, using (4) we conclude that R^*x is convex. It is obvious that there exists $R^{-1}: R\Phi(M) \to \Phi(M)$ and so:

$$(R^*)^{-1}y = \{x|y \in R^*x\} = \{x|\ R^{-1}y \in \Phi(M)\} = \Phi^{-1}(R^{-1}y)$$

Since $\Phi^{-n}y$ is open for every $y \in S$ we conclude that the set $(R^*)^{-1}$ is open and so all the conditions of Theorem B are satisfied for mapping R^* which implies the existence of an element $p \in M$ such that $p \in R^*p$ and so $p \in Hp + \Phi p$. Suppose now that k = 1. For every $n \in N$ we shall define the mappings H_n and Φ_n in the following way:

$$H_n x = \lambda_n H x$$
, for every $x \in M$;

$$\Phi_n x = \lambda_n \Phi x + (1 - \lambda_n) x_0$$
, for every $x \in M$;

where $\{\lambda_n\}_{n\in\mathbb{N}}(0, 1)$ such that $\lim_{n\to\infty} \lambda_n = 1$.

Since
$$H_n M + \Phi_n M = \lambda_n (HM + \Phi M) + (1 - \lambda_n) x_0 \subseteq M$$
 and:

$$\Phi_n^{-1} y = \{ x | y \in \Phi_n x \} = \{ x | y \in \lambda_n \Phi x + (1 - \lambda_n) x_0 \} =$$

$$= \left\{ x | \frac{y - (1 - \lambda_n) x_0}{\lambda_n} \in \Phi x \right\} = \Phi^{-1} \left(\frac{y - (1 - \lambda_n) x_0}{\lambda_n} \right)$$

there exists, as we have proved, for every $n \in \mathbb{N}$, $x_n \in M$ such that

$$x_n \in H_n x_n + \Phi_n x_n.$$

This means that there exists $y_n \in \Phi x_n$ such that $x_n = \lambda_n H x_n + \lambda_n y_n + \frac{1}{2} \frac{1$ Then we have: $+(1-\lambda_n)x_0.$

$$\lim_{n\to\infty} x_n - Hx_n - y_n = \lim_{n\to\infty} (\lambda_n - 1)Hx_n + (\lambda_n - 1)y_n + (1 - \lambda_n)x_0 = 0,$$

since $Hx_n + y_n \in M$ and M is bounded. Further, since M is compact, there exists a subsequence $\{n(k)\}_{k\in\mathbb{N}}\subseteq N$ such that:

$$\lim_{k\to\infty} Hx_{n(k)} + y_{n(k)} = y^*$$

and so $\lim x_{n(k)} = y^*$. Since $y_{n(k)} \in \Phi x_{n(k)}$ and $\lim_{k \to \infty} y_{n(k)} = y^* - Hy_y^* = 0$ we have $y^* - Hy^* \in \Phi y^*$ i.e. $y^* \in Hy^* + \Phi y^*$, which completes the proof. the and the area of the area of the state of

REFERENCES

was let, for the say a let be the left the Cart in a say of the life in a party of the LUCK

- [1] Bocsan, Gh., On some fixed point theorems in random normed spaces. Seminarul de teoria funcțiilor și matematici aplicate, A. Spații metrice probabiliste, No 13,
- [2] Browder, F. E., The Fixed Point Theory of Multivalued Mappings in Topological Vector Spaces. Math. Ann., Band 177, Heft 4, 281-301 (1968).
- [3] Istrătescu, V., Introducere in teoria punctelor fixe. Editura Acad. R.S.R., București,
- Introducere in teoria spațiilor metrice probabiliste cu aplicații. Ed. Tehnica, București, 1974.
- [5] Serstnev, A. N., The Notion of Random Normed Space. DAN, USSR, 149 (2), 280-283 (1963). and follow out all gov hore "W syntogram and contract

21000 NOVI SAD, YUGOSLAVIA Faculty of Sciences, Department of Mathematics, Dr. Ilije Djuričića 4

where I was it was it will be a first