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In this paper we shall prove a fixed point theorem for multivalued
mappings in a complete random normed space (S, &, f) with continuous
T-norm ¢. The notion of random normed space was introduced by SERSTNEV
[5] and in [1] some fixed point theorems in random normed spaces are
proved. First we shall give some definitions and theorems which we shall
use in the later. :

Tt S be a real or complex linear space and A+ be the set of all distri-
bution functions F such that F(0) = 0. A random normed space is an orde-
red triple (S, &, ), where ¢ is a T-norm stronger than T,,: T,(#. v) =
—max {# v — 1,0}and Fisa mapping of S into A+ so that the follo-
wing conditions are satisfied : (we shall denote &(p) by Fy)

1. Fp=H <« p=0 (0 is the neutral element in S)

2. Foy(x) = Fy [I—’;l) for every p < S, # « Rand A « K\ {0} where K

is the scalar field.

3. Fppfx + 5) = UF (%), Foly) for every p, ¢ « S and every
x, ¥y eR.
The (e, A)-topology in (S, &, {) is introduced by the family of (s, A)-
neighbourhoods of v = S

Uye, 3) = {wlu < S, Fun(e) > 1— 4,
where ¢ > 0 and A « (0, 1) and if T-norm ? is continuous then S is, in the
(e, 2)-topology, a Hausdorif linear topological space.

Every random normed space is a Menger space [4] if we take Fu ., =
= F,_,, for every %, v e S. In [4] the following theorem is proved..
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THEOREM A. Let (S, &, t) be a complete Menger space with conti-
nuous T-norm t, A be a closed subset of S and H: A — A such that:

(1) Fyp mkx) 2 Iy (x), for every x > 0 and every p, g = S,
where k < (0, 1). If there exists py = A such that:
(2) sup Gp,(%) = 1, where Gy (%) =inf {F, _, (x)|n = N}

and p, = Hp,_, for every n = N, then there exists one and only one fixed
point p of the mapping H and p = lim p,.

By &(M) we denote the family of all nonempty, closed and convex
subsets of M, where M is a subset of a topological vector space. In [2]
the following theorem is proved.

THEOREM B. Let E be a Hausdorff topological vector space, M be a
nonempty, convex and compact subset of E, ®: M — &(M) be an upper semi-
continuous mapping such that for every vy = M the set:

O 1y = {x]y e Dx}

1s open. Then there exists al least one fixed point of the mapping .

Now, we shall prove a fixed point theorem for mapping H + ® where
H is a singlevalued and @ is a multivalued mapping.

THEOREM. Let (S, &, t) be a complete vandom normed space with conti-
nuous T-norm t, M be a nonempty, convex and compact subset of S, H be an
affine mapping from M into S such that :

(3) Frpy-neyke) 2 Fu_n(e) for every x, % e M

and every € > 0, where k < (0, 11 and @ : M — &(S) be an upper semiconti-
nuous mapping such that HM + OM < M and the set @1y is open for
every y e S. Then there exists at least one fixed point of the mapping H 4 @.

Proof : First, we shall suppose that 2 < (0, 1). For every y = ®(M)
we shall define the mapping G,: M — M in the following way:

Gy(x) = Hx + y, for every x = M.

Using the inequality (3) we conclude that :

Fe -y m(ke) > Fyn(e), for every y < ®(M)

every %;, %, « M and every ¢ > 0. Since T-norm ¢ is continuous, S is a
Hausdorff topological linear space and so it follows that the compact
set M is bounded which means that for every neighbourhood V' of zero
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there exists § > 0 suchthat M < §V. If V = {¥|F,(¢) > 1 — A} we ob-
tain that —:— e V ie. that:

F(e) >1 — A for every x « M

and so F, (8¢) > 1 — 23 for every x « M. From this it follows that the
condition (2) is satisfied. Now, from Theorem A it follows that for every

Vv e ®(M) there exists one and only one fixed point Ry of the mapping G

[ Tl y

and so Ry = HRy -+ y for every y e ®(M). Let us prove that the mapping
R:y — Ry is continuous. Suppose that lim y, =y (v,, ¥ < ®(M)) and

#—00

let us show that lim Ry, = Ry. Since R:®(M) — M and M is compact

7 —+ 00
it follows that there exists a subsequence {y,u}sey such that lim Ry =
k=00

= y*. Then from Ry,u = HR(yum) + Yuw we have:
Py By ey

and since the equation z = Hz +4 y has one and only one solution Ry,
we have Ry = y*. Since every subsequence of the sequence {Ry,} has a
convergent subsequence with the limit Ry we have that the mapping R
1s continuous. Further, we shall define the mapping R*: M — 2M in the

following way: R*x = (J Ry for every ¥ « M. It is obviuous that the
A . y=0z :

mapping R* is upper semicontinuous and we shall prove that R*x is con-

vex set, for every x « M. Using the fact that mapping H is affine for every

%, B=20 a4+ B =1 we have:

(4) R(ay, + By.) = aRy, + BRy, for every y,, ¥, = Dx.

So from the fact that ®x is convex, using (4) we conclude that R*x is con-
vex. It is obviuous that there exists R=1: RO(M) — ®(M) and so:

(R¥) ™ty = {#ly « R*x} = {s| Rl « O(M)} = O~YR1y)
Since ®"y is open for every y =S we conclude that the set (R*)~1 is
open and so all the conditions of Theorem B are satisfied for mapping R*
which implies the existence of an element » = M such that p e R*p and

so p e Hp + @p. Suppose now that & = 1. For every # =« N we shall
define the mappings H, and ®, in the following way :

H,x = ) Hzx, for every x « M ;
O,x = 1Px 4+ (1 — A,)%,, for every ¥ « M ;

where {A,},en(0, 1) such that lim A, = 1.

7=+00
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Since H,M + ©,M = N(HM + OM) + (1 — 1,)%, € M and:
Oy = {x|y € Da} = {x|y e 1,Dx + (1 — N)%ep =

L, {xl ¥y = (17\'— IDEDN E(Dx} e (D—l[y ii (17‘\— NED)

there exists, as we have proved, for every # = N, x, « M such that
%, e H,x, + ©u%,.

This means that there exists y, = ®x, such that x, = NH%, + Ny,
+ (1 _— 7‘ﬂ)%o
Then we have:

lim xn—Hxn—ynzlim ( " )H% +( )yn+ (1 . 7\,,)960:0,

#— 0 #$— O

since Hx, + v, « M and M is bounded. Further, since M is compact,
there exists a subsequence {n(k)}rey S N such that:

im Hxuw + Yoy = Y™

k— o0

and so hm Ly = Y¥*. Since Yup = Ox,p and hm Yy = Y* — Hyy =

we have y — Hy* = Oy* e y* <= Hy* + Dy*, Wthh completes the proof.
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