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In a previous note [5] we proved the following characterization of
boundaries of smooth strictly convex plane sets:

THEOREM 1. A plane compact set S is the boundary of a smooth strici-
Ly convex set if and only if the following conditions hold :

(@) Vv,y,2eS S int conv {2} =d.

(é)) For every triamgle P, P,P, in R? there is one and only one triangle
PP Py with sides parallel to the sides of P,P,P, and of the same ovien-
tation as P, P,Py and which is inscribed in S in the sense that Pj,P;, Ps< S.

In this paper we shall prove another theorem, which characterizes
the boundaries of smooth strictly convex plane sets. We shall maintain
condition (b) of Theorem 1, but instead of condition (a) we shall use a
kind of ’smoothness’” condition, namely condition (i) of Theorem 3.
Conditions of this nature have been studied also by w.R. aABEL and
LM. BLUMENTHAIL [1]. The terminology will be the same as in [5]. We
shall denote by int S, bd S, card S and conv S the interior, the boundary,
the cardinal and respectively the convex hull of the set S.

In the sequel we need also the following theorem of A. MARcHAUD [7]:

THEOREM 2. In order that a continuum C in an n-dimensional Ewucli-
dean space be a Jordaw curve without double points it is necessary and
sufficient that for any x < C and for every sufficiently small open connected
set G containing x we have

card {C N\ bd G} 5 2.

We can now enounce our main result:
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THEOREM 3. In order that a plane compact set S be the boundary of a
smooth strictly comvex set it is necessary and sufficient that the following
two conditions are vevified :

(1) For every p =S and for every ¢ >0 there exists a positive number
3(p, €) such that for cvery triplet v, s, t of points of S (N D(p, 8(p, €)),
v £ S FEL#Er we have max x (v, s, f) >n — ¢, where D(p, 3(p, €)) s
the interiov of the disc with center p and radius 3(p, z).

(17) For every triangle abc in R® there is ome and only owe triangle a'b'c’
with sides parallel to the sides of abc, of the same ovientation as abc and
which is inscribed in S in Lhe sense that a', b, ¢’ < S.

By max x (7, s, {) we denote the maximum angle of the triangle rst.

Proof of the sufficiency. et S be a plane compact set which verifies
conditions () and (i1). Let a(0), 5(0), ¢(0) and c(1) be four points of S
such that a(0)6(0)c(0)c(1) is a convex quadrilateral. For a given ¢ < [0, 1]
consider the point ¢, = #¢(1) 4 (1 — #)¢c(0). By condition (4i) there corres-
ponds to the triangle a(0)h(0)c, one and only one triangle a(f)b(f)c() with
sides parallel to those of the traingle a(0)b(0)¢, of the same orientation
as the triangle «(0)5(0)c, and which is inscribed in S, i.e. for which
a(t), b(t), c(t) = S. With a(t), b(!) and c(f) defined in this way we can con-
sider the following three mappings:

a: [0, 1] =S,
b: [0, 17— S,
¢: [0, 1]—=S.

Lemma 1. The three mappings a: [0, 1] =S, b: [0, 1] =S and
¢: [0, 1] = S are continuous. We have in plus a(0) = a(1) and b(0) = b(1)
and the points ¢(0) and c(l) are connected by a way in S.

We say thgt two points @ and & are connected by a way in S if
;I(lf:;e 12 a continuous mapping f: [0, 1] — S such that f(0) =a and
Proof of Lemma 1. Suppose for instance that the mapping c: [0, 1]—
— S is not continuous. There is then a sequence {£,},~, with ¢, e [0, 1]

and lim ¢, = #° such that the sequence {c(t,)},—; doesn’t converge to c(t°).

#—C0

Then there exists and ¢, > 0 such that in the exterior of the open disc
Db = D(c(1), €y) of centre c(®) and of radius e, there are an infinity
of points c(¢,). Since S — D9 is a compact set, we can extract a subsequen-
ce {m}p=y for which

lim clty,) = c* « S — D°

k—o0

(1) lim a(t, ) = a* < S

k— o0 L

tim b(t, ) = b* < S.

k=0
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We consider now the following three cases:

1) a* = b* = c*.

II) Only two of the points a*, b* and ¢* coincide.
III) a*, b* and c* are three distinct points.

1) In the first case denote with m=max max « (a(0), b(0), ¢,). By the

0=t=1
convexity of the quadrilateral a(0)5(0)c(0)c(1) follows immediately m <{m.
Let be ¢ = ”—Zm>0. By condition () there corresponds to a* and

¢ a number 3(a*, ¢) such that for every triplet of points 7, s, 1 = SN
N D(a*, 3(a*, <)), # #s#t#7 we have max X (7, s, t) > n — . It follows
from (1) that there is a number N such that for & > N we have alt,,),
bit,,), c(t,) =S N D(a* 3(a* ¢)). Therefore we have for %k > N the
inequality max % (alt,,), b(,), c(t,)) > =~ — e But as the triangles
a(tnk)b(tnk)c(t',,k) and a(O)b(O)ct”k have parallel sides, we have also

Tttt W T T2 > m, which contra-
2

max ¥ (a(0), 5(0), c,nk) >T—& =1 —
dicts the definition of m.

II) ‘Suppose now that we are in the second case, i.e. only two of
the points a*, b*, c¢* coincide. If we denote with min % (4, b, ¢) =
— min { xabe, xbca, ¥xcab} we obtain in this case

lim min ¥ (a(t,, ), b(t,), clt,)) =0
k—
Since the corresponding sides of the triangles a(t,,)b(t,,)c(t,,) and a(O)b(O)c,”k
are parallel, it follows also that
lim min ¥ (a(0), &(0),

k— o0

) =0,

c’”k

which contradicts our hypothesis that a(0)b(0)c(0)c(1) is a convex quadrila-
teral.

ITI) Consider now the third case, when the three points a*, b*, c*
are distinct. Since the triangles a(O)b(O)c,nk and a(t,,)b(t,,)c(t,,) have the

corresponding sides parallel and are of the same orientation, the same
holds for the limit positions a*b*c* and a(0)b(0)ce. But the triangle
a(t®)b(t*)c(#?) is also inscribed in S, has its sides parallel to those of the
triangle @(0)b(0)cor and has the same orientation as the triangle a(0)b(0)cs.
Because ¢* = S — D°, ¢(t?) « D® we have c¢* # ¢(f°), which contradicts
the unicity part of condition (ii).

It follows that c¢: [0, 1] = S is a continuous mapping and thereby
we can say that the points ¢(0) and ¢(1) are connected in S by a way.

The proof of the continuity of the mappings a: [0, 1] — S with 4(0) =
=a(l) and b:[0, 1] =S with 5(0) = b(1) is the same as that of the
continuity of the mapping c¢: [0, 1] — S. _ ;
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Lemma 2. Let S be a plane compact set which verifies the conditions
(¢) and (i) and let a and b be two arbitrary points of S, a # b. There exists
thew a parallel to the line L(a, b) that meets S in at least two points.

Proof of Lemma 2. Let L(a, b) be the line determined by the points
a and b. Let us suppose that on every parallel to L(a, b) different from
this, there is at most one point of S. We can choose a rectangular system
of coordinates in R? such that the Ox-axis coincides with L(a, b). We
can also suppose that 4 and & are the points of S (M L(a, ) of minimal
and respectively of maximal abscissa. Let ¢, and d, be the two points
in R? of positive and respectively of negative ordinate such that the trian-
gles abc, and abd, are equilateral. Let a,b,¢ be the triangle which corres-
ponds by (i) to the triangle abc, and let a,b,d be the triangle which
corresponds by (i) to the triangle abd,. By our supposition that for every
line L' parallel to IL(a, b) with L’ % L(a, b) we have card L' S £ 1,
it follows that a,, b;, a,, b, = L(a, b), ¢ & S has a positive ordinate and
d = S has a negative ordinate. It results then that abcd is a convex
quadrilateral inscribed in S. Applying Lemma 1 we see that 4 and ¢ are
connected in S by a way « and the points b and ¢ are connected in S
by a way B. By our supposition that every parallel to the Ox-axis cuts
S in at most one point it follows that the segment [a, 8] C S and there
follows also the existence of a point ¢ of the segment [4, ] suchthat e
is connected with ¢ by a way y in S, all pomts of v with the exception
of ¢ having positive ordinates.

We have now to distinguish two cases:

1) yNint conv {a, b, ¢} #O
2) y N int conv {a, b, ¢} =0

In the first case consider a point ¢’ of v (N int conv {a, b, c}. Denote
by a' the intersection point of the segment [4, ] with the parallel to
L(a, c¢) through ¢’ and with &’ the intersection point of the segment [a, b]
with the parallel to L(c, b) through ¢’. Both triangles abc and a’b’c’ are
then inscribed in S, they have the corresponding sides parallel and they
are of the same orientation. But this contradicts the unicity part of
the condition (47).

In the second case we can suppose ¢ = a. If we choose now a point
J interior to the triangle abe, it follows that there doesn’t exist any trian-
gle inscribed in S of the same orientation as the triangle abf and with
sides parallel to the corresponding sides of the triangle abf. We got again
a contradiction, this time to the existence part of condition (¢%). This
completes the proof of Lemma 2.

Lemmma 3. If S is a plane compact set for which conditions (i) and
(¢) are verified, then S is a conmtinuum.

Proof of Lemma 3. Let a and b be two arbitrary points of S. Accor-
ding to ILemma 2 there exist two points ¢ and 4 of S such that
abed is a trapezium. Applying now ILemma 1 it results that the points
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a and b are connected in S by a way. It follows that S is connected.
Since S was supposed to be compact, S is a continuum.

For each p = S and for any & > 0 there exists accordingly to condition
(#) of Theorem 3 a number §(p, ) such that for any triplet #, s, ¢ of
points from S M D(p, 3(p, ¢)) with 7 # s # ¢ # r we have max ¥ (7,s,t) >
> 7 — . We have then

Lemma 4. Let S be a set of the Euclidean space R® for which condi-
tion (1) holds. For every p = S and 8 < 8(p, =/3) we have then

card {S N C(p, 3)} £ 2,

where C(p, 8) is the civcle with cemter p and of radius 3.

Proof of Lemma 4. Let us suppose the contrary, i.e. the existence
of a point » « S and of a 3§, < 8(p, w/3) such that we have card {S N
N C(p, 3,)} = 3. Let then #, s, £, be a triplet of distinct points of the
set S C(p, 3,). At least one of the arcs #s, st or ## has then a length
< 2w3,/3. We can suppose without loss of generality that the arc »s has
a lenght =< 2md,/3. The triplet of points #», p, s verifies then p # » #
#s#pandr, p, s e S D(p, 3(p, w/3)). But as m = xprs + xpsr =
=7 — rps 2 /3 it follows for the isosceles trlangle rps (withrp =

= sp) that TC/6 S xprs = gpsr £ wf2. Hence we have max & (r, p, s) S
£ 2n/3 and we got a contradiction to property (i).

Applying now Lemma 4 to a plane compact set S, which verifies
conditions (¢) and (77) of Theorem 3, we get for § < 3(p, =/3) the ine-
quality card {S M C(p, 8)} = 2, where C(p, 8) is the circle of center p
and radius 3. By Theorem 2 of A. MARCHAUD it follows that Sis a Jordan
curve without double points.

Our objective is now to prove that S is a closed Jordan curve. Sup-
pose that S is an open’ Jordan curve of endpoints ¢(0) and ¢(1), ¢(0) #
# ¢(1). Since S verifies condition (ii) it results immediately that S must
have points beyond the line L(c(0), ¢(1)) determined by the points ¢(0)
and ¢(1). Let ¢ be a point of S having a maximal distance to the line
L(c(0), ¢(1)). Such a point e exists because S is a compact set. Every
line parallel to L(c(0), ¢(1)) between e and L(c(0), ¢(1)) cuts S in at least
two points. Let L be such a parallel line to L{c(0), ¢(1)) and let a(0)
and b5(0) be two points of S () L such chosen that one of them belongs
to the Jordan curve with endpoints ¢(0) and e, while the other belongs
to the Jordan curve with endpoints e and ¢(1) and a(0)b(0)c(0)c(1) is a
trapezium. With a(0), b(0), ¢(0) and ¢(1) such determined, consider now the
mapping ¢: [0, 1] = S defined in Lemma 1. This mapping is continuous
by Lemma 1. But since a continuous mapping applies a connected set
into a connected set, it follows that there is a ¢ e [0, 1] such that ¢(¢) =
= e. This means that there is a triangle a(f)b(¢)c(t) inscribed in S with
51des parallel to the corresponding sides of the triangle a(0)b(0)c, (where
¢, = tc(l) + (1 — #)¢(0)) and of the same orientation as the triangle
2(0)b(0)c, and in plus we have c(f) = e. But then the points «(f) and b(¢)
of S would have a distance to L(c(0), ¢(1)) greater than the distance of



64 HORST KRAMER 6

¢ to the line L(c(0), ¢(1)). This contradicts the definition of the point e.
It follows that S is a closed Jordan curve without double points.

We shall now prove that S is a convex Jordan curve, i.e. S has to
coincide with the boundary of its convex hull, S =bd conv S. Let
s suppose S # bd conv S. Since we have S C conv S = bd conv S UJ
Uint convS and S is a closed Jordan curve without double points
it follows that S () int conv S # & and there has to be a point # =
< bd conv S such that x & S. By the theorem of w. FENCHEL (see [3]
or [4]) on the convex hull of a conuected set, there are two points ¢(0)
and ¢(1) in S such that x e conv {¢(0), ¢(1)} i.e. x belongs to the line
segment [¢(0), ¢(1)]. Since S is a compact set, we can choose the points
¢(0) and ¢(1) in S such that J¢(0), ¢(1)[ N S = 3. L(e(0), ¢(1)) is a suppor-
ting line for conv S. Let L’ be the other supporting line for conv S which
is parallel to L(c(0), ¢(1)). Since S is a compact set we have EL M8 £
£ (. Let e be a point of L' () S. The points ¢(0) and ¢(1) determine
on the closed Jordan curve two simple ares, namely the arc ¢(0)ec(1)
and an arc ¢(0)ye(1) which have only their endpoints in common. The arc
¢(0)yc(1) with the exception of its endpoints ¢(0) and ¢(1) is contained in
int conv S. Let f bé a point on the arc ¢(0)yc(1) at a maximal distance
from the line L(c(0), ¢(1)). Let b(0) be a point on the subarc ¢(0)f and
a(0) be a point on the subarc ¢(1)f such that the liner L(a(0), 5(0)) is paral-
lel to the line L(c(0), ¢(1)). The quadrilateral a(0)b(0)c(O)c(l) is then a
trapezium and we can again define the mappings 4: [0, 1]— S, b5:[0, 1]—
—S and ¢: [0, 1]1-» S as those in Lemma 1, ie. such that a(t)b(t)c(t)
is the unique triangle inscribed in S with sides paralel to those of the
triangle a(0)b(0)c, and of the same orientation as the triangle a(0)b(0)c,,
where ¢, = fc(1) + (1 — £)¢(0). Since this three mappings are continuous
accordingly to Lemma 1, it follows that the image of the interval [ =
= [0, 1] under the mapping ¢: [0, 1] =S is a connected subset of S,
which contains the points ¢(0) and ¢(1). It follows that ¢(I) must contain
either the point ¢ or the point f.

The point e cannot be contained in ¢(I), because there doesn't exist
any { e [0, 1] such that c(f) =e and that the triangle alt)b(é)e(t) is
inscribed in S, has parallel sides to those of the triangle @(0)b(0)c, and
is of the same orientation as the triangle a(0)b(0)c, where ¢, = fe(l) +
4+ (1 — 8)e(0). For each .t = [0, 1] follows b(t) # ¢(0), b(t) # ¢(1), alf) #
# ¢(0) and a(f) # ¢(1). For, if we suppose the contrary, it results that
¢(t) and f are on opposite sides relative to the line L(c(0), e(1)), which
is impossible since L(c(0), ¢(1)) is a supporting line for conv S. Since b(0)
belongs to the arc ¢(0)fc(1) and 5:[0, 1] — S is a continuous mapping
it follows that b(f) belongs to the arc ¢(0)f¢(1) for every ¢ = [0, 1]. If we
suppose, that for some ¢ = [0, 1] we have c(f) — f, it results that a(/)
and b&(f) have a greater distance to the line L(c(0), ¢(1)) than the point f,
which contradicts our choice of the point f. Hence we have proved that
S = bd conv S. ' _

The proof of the strict-convexity of conv S is the same as in the
proof of Theorem 3 in [5]..
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We have further to prove that conv S is a smooth set. Let us suppo-
se the contrary i.e. the existence of a point a2 « S = bd conv S at which
we have two supporting lines D; and D, which form an angle « with
vertex a. We consider on the bisector B of the angle « a sequence of

points {f\cn}f,o:l which tends monotone on B to the vertex a. The perpen-
dicular in x, on the bisector B will meet S in at least two points. Let
b, and ¢, be two of these points. It is obviously that with lim x, = a

n
. = #— 00
we have also lim b, = 4 and lim ¢, = a. We set now a, = a, n =1, 2,....
71— 0

#— 00
The following inequalities are then obviously :

T

— ™
xab.c, Z 5 xac,b, =

-
wOuChn = i and «b,a,c, < o

Hence we have

x ab,c, <mw— xa,ch, ST — ”;“: “—;“
and also ¥a,c,b, < n—;——a Then we can deduce
T+ «

3

max ¥(a,, b,, ¢,) <

which contradicts condition (i). This completes the proof of the sufficiency
of Theorem 3.

Proof of the mecessily. Tet S be a compact set in R?, which is the
boundary of a smooth strictly convex set. The necessity of condition (ii)
follows from Theorem 2 in [6]. In order to prove the necessity of condition
(i) we shall use the mapping f: S — C of the set S onto the unit circle
defined by parallel supporting lines.

Let p S and € >0 be a given positive number. We denote by
d, the unique supporting line of conv S through the point p and with
d} the line tangent to the unit circle, which is parallel to d, and relative
to which C is on the same side as conv S relative to d,. Let f(p) be the
unique contact-point of d; with the circle C. By a well-known theorem
(see for instance [2] p. 13) f: S — C is a continuous mapping. Let ¢,
and ¢, be the two points on the circle C such that the arcs f(p)g, and
f($)gs have the length . By the continuity of the mapping f:S — C there
is a neighborhood U of # such that for every x e SN U, f(x) belongs
to the open arc ¢,q, (i.e. the arc ¢,g, without its endpoints ¢, and gs).
There is then a §(p, ¢) > 0 such that for every x e S D(p, 3(p, ¢)) f(#)
belongs to the open arc ¢,¢,. Let #, s, ¢ be three distinct points of
S N D(p, 8(p, €)). We can suppose without loss of generality that the
points #, s, ¢ are in this order on the arc S D(p, 3(p, ¢)). Let u be
the intersection point of the supporting lines d, and d, of conv S through
r and respectively through ¢. Let d; be the tangent line through f(7) to
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the circle C (hence 4, is parallel to this tangent line) and d; be the tan-
gent to the unit circle through f(f) (hence parallel to d,). Denote with v
the intersection point of the lines 4, and d;. Since s is in the interior
of the triangle ruf we have the inequality #st > %7ut and therefore

max X(7,8¢) = xrst > xrut = ¥f(r)vf(t) >n — e

The last of these inequalities follows from the fact that f(») and f(f) belong
to the arc ¢,f(p)q. of length 2¢. With this we have proved the necessity
of condition (i).
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