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In a previous note [5] we proved the following characterizaLion of
boundaries of smooth strictly convex plane sets:

THEoRETT l. A þla.ne comþq.ct søl S is tke bound,ary of ø smooth strict-
ly conuex set ,if ønd, only if the foll,ouing cond.itions hold. :

V) Y x, y, z e s s fl int conv {ø, !,2) : Ø.

(b) For eaely triøngle PTP,PB iø Rz tltere is one ønil only one triangle
P'LPLPí with sid.es þørøllel to tke sid,es of PrPzPs ønd, of tke søme orien-
tation as PrPrP" and ukich is inscribed, in S in tke sense thøt P'r,P'r,Pi = S.

In this paper r,ve shall prove another theorem, which characterizes
the boundaries of smooth strictly convex plane sets, 'W'e shall maintain
condition (b) of Theorem l, but instead of condition (a) we shall use a
kind of "smoothness" condition, namely condition (i) of Theorem 3.
Conditions of this nature have been studied also by w.n. ¡sp1 and
rr.M. BrruMENTHArr ll]. The terminology will be the same as in [5].'r4/e
shall denote by int S, bd S, card S and conv S the interior, the boundary,
the cardinal and. respectively the convex hull of the set S.

In the sequel we need also the following theorem of e. rvrencnauo [7] :

THEoRÞM 2. In ord.er that ø continuum C in a.n n-d,imensional Eucl,i-
d,eøn sþace be ø Jordan curue aitkout double þoints ,it is necessøry ønd,
sufficient that for a.ny x e C and. for eaery sufficientl,y smal,l, oþen connected.
set G contøining x we haae

card {C n bd G} S 2.

We can now enounce our main result:
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ei 10, 1l *S,
b: 10, 1l *S,
ci [0, 1] *$.

I,emma l. Tloe three m,øþþíngs ø: [0, 1] *S, ó:[0, 1]
c: 10,- 11 -Ì S øye continuous. We kaae in þlus ø(0) : a(1) a.nct b
ønd, tlte þoints c(0) ønd. c(l) øre connected, by ø wøy in S.

We say that trvo points ø and b are connected by a way in S if
there is a continuous mapping f :10, 1l + S such that /(0) : q and
Í(1) : b.

Proof of Lemmø 1. Suppose for instance that the mapping c: [0, 1]*
*s is not continuous. 'lhere is then a sequence {t,}i+ with tn e [0, 1]
and lirn t,: to such that the sequence {c(t,)}f,:1 doesn't converge to c(to).

fn"riii"r" exists and eo > 0 such that in the exterior of the open disc
D0 : D(c(to), .o) of centre c(t|) and of radius eo there are an- infinity
of points c(l;). Since S - D0 is a compact set, we can extract a subsequen-
ce {no\f;:, for which
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We consider now the following three cases :

I) a.* : b* : cx.
II) Only two of the points &*, b* antd c* coincide'

III) ø*, ó* and c* are three distinct points'

I) Inthefirst case denote wit]n nx:rrrax max {(ø(0), ó(0), c,). By the

convexity of the quadrilateral ø(0)b(0)c(0)c(t) follows imrnediately 1n <rc.

I,et be .:n - * >0. By condition (ù there corresponds to ø* and
2

e a number ò(ø*, e) such that for :very triplet of points r, s, t 
=-l 

n
f)D(a'', 8(ø*,'e)), i +s+t*r we have max *(r,-s, t) > f-- e. It follows
irbm'(l) tÈat'there is a nurnber N such that for Þ > N we have ø(t,o),

b(t,o), c(t,u) = S n D@*, 8(øx, t)). Therefore we have for Þ > N the

inequality max x(ø(t,u), b(t,,), c(tno)) > ^ - ". But as the triangles

e(t,h)b(t*h)c(t,h) and a(A)b(O)c,,0 have parallel sides, we have also

max * (ø(0), b(0), cnn) ) ir - €':'IE -ry:#, *, which contra-

dicts the definition of m.
II) Suppose now that we are in the second case, i.e. only two of

the póints^ãx, b*, c;k coincide. If we denote with min * (ø, b, c):
: min {+øbc, *bcø, *cøb} we obtain in this case

lim min +1)P^o¡, b(t*u), c(t,u)) : o
/¡+ æ

Since the corresponding sides of the triangles ø(t*o)b(t,,h)c(tnu) anð' ø(0)b(0)c,,,u

are parallel, it follows also that

limmin * (ø(0), b(0), c,no):0,

which contradicts our hypothesis that ø(0)b(0)c(0)c(1) is a convex quadrila-
tera1.

III) Consider riow the third cale, rvhen the three points ø*, b*, c*
are clistinct. Since the triangles ø(0)ó(0)c rno utt a(t,,0)b(t,o)c(t,u) have the

corresponding sides parallel and are of the same orientation, the sqme
holds'for th"e limit þositions ø*bxct' anð' ø(0)b(0)cr. But the triangle
ø(to)b(to)c(to) is also inscribed in S, has its sides para11el. to those of the
trìaãgle' ø10)tt1O¡ct" and has the same t rientation as the triangle a(0)b(0_)c¡".

Becaúse i* = S - Do, c(to) e Do we have cÅ' + c(tl), which contradicts
the unicity part of condition (ii).

It foliows that c: [0, 1] - S is a continuous mapping and, thereby
we can say that the points c(0) and c(1) are connected' in S by a way.

1the pioof of the cóntinuity of the mappings a: 10, 1l - S with ø10) -:: e(l) lrrð. b: [0, 1] - S with ó(0) : å(1) is the same as that of the
continuity of the mapping c: [0, 1] *S.

,)
STRICTI-Y CONVEX PLANE SETS

TTTEoREM 3. In order thøt a þløne comþøct set S be tloe boundary of ø
smootk {.rictly conl)ex set 'it 'is lr.ecess&ly and, suffic'ient th,ctt the foitoui,ngtuo cond,itions øre aerified. :
(i) For eaery þ = S ønd. for eaely €, > 0 there ex'ists ø þos'itiae number
8(1, r) swch lJ'tot for euery triþl,et r, s, t of þoints o/ S n D(þ, S(þ, e)),r +s +t {r ute høae.t:rax * (r, s, t)}n-e, ahere D(þ,8(þ,-e)) is
the intey,íor of the d.isc aíth center þ andrød.ius ù(1, 

").(ii..)_For_eaery h,iø-ngle øbc ir1 Rz there ,is one ønd only one triøngle a,b,c,
with sid.es þørøllel' to tloe s'ides of abc, of the søme orientøtion as" øbc ønd.
ul,riclc 'is ,inscribcd, in S i,to lhe sense that a' , b' , c' e S.

By max X_ (r, s,^t) s'e denote_the maxitlum angle of the triangle zsl.
Proof of tke suffic,iency. I,et S be a plane comþact set which lerifies

conditions (i.) and (ü). I,et ø(0), b(0), c(0) and c(i) be four points of S
quaclrilat
)c(0). By
nd only
e ø(0)ó(0
is inscribed in S, i.e. for which

c(l) defined in this way we call corl-

-S ønd
(0) : ð(1)

(1)

Ii*t(t.o) 
: ç* ¿ S - Do

Liï*o(t"o): 
ø* e S

li^ b{t"o¡ : ó* e S.
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I, e m ln a 2. Let S be ø þløne comþøct set ukick uerifí.es the conditions
(i) and, (ii.) ønd /,et ø and. b be two ørbitrøry þoints of S, ø t' b. Tkere exists
tken a þørallel to the l'ine L(ø, b) thøt meets S in qt l,eøst tuo þoi,nts.

Proof of Lemmø 2. I.et L(a, b) be the line determined by the points
a and b. I.et us suppose that on every parallel to L(ø, ó) different from
this, there is at most one point of S. We can choose a rectangular system
of coordinates in R2 such that the Ox-axis coincides with L(ø, ó). We
can also suppose tlnat ø and ó are the points of S f-) L(ø, b) of minimal
and respectively of maximal abscissa. I,et co and d,o be the two points
in R2 of positive and. respectively of negative ordinate such that the trian-
gles øbco and abd,o are equilateral. I,et arbrc be the triangle which corres-
ponds by (ü) to the triangle øbco and let ørbrd be the triangle which
corresponds by (i,i) to the triangle øbd.o. By our sllpposition that for every
line Z' parallel to L(ø, ó) with L' ¡ L(ø, ó) we have card ¿'n S < 1,
it follows that ar, br, &r, b2 e L(a, b), c e S has a positive ordinate and
d, e S has a negative ordinate. It results then that øbcd, is a convex
quadrilateral inscribed in S. Applying I,emma 1 we see that a and c a¡e
connected in S by a way æ and the points b ar'd c are connected, in S
by a way Ê. By our supposition that every parallel to the Ox-axis cuts
S in at most one point it follows that the segment lø, bl C S and there
follows also the existence of a point ¿ of the segment [ø, ó] suchthat e

is connected with c by a way T in S, all points of .¡ with the exception
of ø having positive ordinates.

We have now to distinguish two cases:

1) V O int conv {ø, b, c} * Ø

2) y ) int conv {a, b, c} : @.

fn the first case consider a point c' of "¡ J] int conv {ø, b, c}. Denote
by ø' the intersection point of the segment fø, b) with the paralle1 to
L(ø, c) through c' and wttln b' the intersection point of the segment [ø, ó]
with the parallel to L(c, b) through c'. P,ott' triangles abc and a'b'c' are
then inscribed in S, they have the corresponding sides parallel andthey
are of the same orientation. But this contradicts the unicity part of
the condition (ii).

fn the second case we can suppose ê : ø. ff we choose now a point
/ interior to the triangle abc, it follows that there doesn't exist any trian-
gle inscribed in S of the same orientation as the triangle abf and wftln
sides parallel to the corresponding sides of the triangle øbf . We got again
a contradiction, this time to the existence part of condition (ii). This
completes the proof of l,emma 2.

L e mm m a 3. If S is a þlane com,þact set for uhich cond.itions (i) ønd,
(ä,) øre aerified., then S is a cont,inuum.

Proof of Lemmø 3. L"t a and, ó be two arbitrary points of S. Accor-
ding to I,emma 2 there exist two points c and. d of S such that
a.bcd, is a trapezirm. Applying now l,emma 1 it results that the points
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ø and b are connected in S by a way. It follows that S is connected.,
Since S was supposed to be compact, S is a continuum.

For each þ = S and for arly e > 0 there exists accordingly to condition
(i) of Theo¡em 3 a number à(1, e) such that for any triplet r, s, t of.
points from S aD(þ, àØ, ")) withr + s +t t'r we have max *(r,s,l))
> ir, - e. We have then

L e m m a 4. Let S be ø set of lke Euclid,eøn sþace Rz for ukick cond,i-
tíon (i) hol,d.s. For euery þ e S and. I < 8(p, nl3) ae høue then

card {S f\ CØ, à)} < 2,

wkere C(þ, 8) is the circle with center þ ønd, oJ rad.ius 8.
Proof of l,emma 4. I.el us sllppose the contrary, i.e. the existence

of a point þ = S and of a 8o { 8(þ, nl3) such that we have card {S (l
f) C(þ, 8r)) > 3. I,et then r, s, l, be a triplet of distinct points of the
set S (-) C(1, òo). At least one of the arcs /s, sl or tr lnas then a length
< 2æ80/3. We can suppose without loss of generality that the arc zs has
a lenght < 2æ80i3. The triplet of points r, þ, s verifies then þ * r *
*s+þandt, þ, s =Sn D(þ,8(þ, æ/3)). But asæ à *þrs¡ *þsr:: rE - Xrþs ¿ rclS it follows for the isosceles triangle rþs (withrþ:
: sþ) lhat nl6 S *þrs : 4þsr S nl2. Ilence we have max * (r, þ, s) 3
l2rcl7 and we got a contradiction to property (i).

Applying now I'emma 4 to a plane compact set S, which verifies
conditions (i.) and (ii) of Theorem 3, we get for ò < 8(_¿, æ/3) the ine-
quality card {S a C(þ, à)} < 2, where C(1, 8) is the circle of center I
and ¡adius 8. By Theorem 2 of. t. MARcHAU,D it follows that S is a Jordan
curve without double points.

Our objective is now to prove that S is a closed Jordan curve. Sup-
pose that S is an open'Jordan curve of endpoints c(0) and c(1), c(0) +
+ c(I). Since S verifies condition (iÐ it results immediately that S must
have points beyond the line L(c(O), c(1)) determined by the points c(0)
and c(1). T.et e be a point of S having a maximal distance to the line
L(c(O), c(I)). Such a poirft e exists because S is a compact set. Every
line parallel to L(c(O), c(1)) between e and L(c(O), c(1)) cuts S in at least
two points. I.et L be such a parallel line to Z(c(O), c(1)) and let a(0)
and ö(0) be two points of S f) Z such chosen that one of thembelongs
to the Jordan curve with endpoints c(0) anð. e, while the other belongs
to the Jordan curve with endpoints e and c(1) and ø(0)b(0)c(0)c(1) is a

h (1) such determined, considernowthe
I mma 1. This mapping is continuous
B mapping applies a connected set
d e is a t e lO, ll such that c(t):

: ø. This means that there is a triangle a(t)b(t)c(l) inscribed in S with
sides parallel to the corresponding sides of the triangle a.(0)b(0)c, (where
c,: tc(l) + (l - l)c(O)) and of the same orientation as the triangle
ø(O)b(0)c, and in plus we have c(l) : e. Bttt then the points a(t) and b(t)
of S would have a distance to Z(c(O), c(1)) greater lhan the distance of
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e to t:ne line I(c(O), c(1)). This contradicts the definition of lhe point ø.

It follows that .b'ii a blósed. Jordan curve without double points.
we shall no\M pfove thal s is a convex Jordan,curve, i.e. s -has 

to
coincide with the 

^boundary of its convex hull, s : bd conv s. Let
,t. t.tppot" S +bd conv S. Since we have SCcoTYS:bd' conv S !
¡ iïi'là"" S and S is a closed Jordan curvé without double points
il foilows that S f¡ int conv S + Ø and there has to be a point x -=
e bd. conv S such äat x É S. By the theorem of w. FENSHETT (see [3]

ected set, there are two Points c(0)

adrilateral ø(0)b(0)c(0)c(1) is then a

îllfi'ï5"Í 
' 
I1'.,1F'ï; !',tï:u,it u',

with sides paralel to those of the
ientation as the triangle a(O)b(O)ct'

this three mappings are continuous
that the image of the interval 1 :
1l -S is a ðonnected subset of S,
lt. It follows tlnat c(I) must contain

is of the sarne orientation as the t

S : bd. conv S.- i¡" proof of the strict-convexity of conv S is the same as in the
proof of Theorem 3 in [5].

We have further to prove that conv S is a smooth set, I,et us s11ppo-
se the contrary i.e. the existence of a point ø = S : bd conv S at which
we have two supporting lines D, and Dr, which form an angle a with
vertex ø. We consider on the bisector B of the angle ø a sequence of
points {x,}i:t which tends monotone on B to the vertex ø' 'Ihe. perpen-
ãicular'in' x, on the bisector B will meet S in at least tr,vo points. I,et
b, and c,, bè two of these points. It is obviously that *ith jT xn: a

we have also lim br: a and lim c¡: a. We set now a'n: Q,, ft: l, 2,'.,.
fl)6 1t-Q

The following inequalities are then obviously:

+.anb,cñ Z T, 4anc,bn ¿T and {bn&*c, 3 a..

IIence we have

4 &,þnc*(æ- 4'-rcnbn3æ- :t+
22

and also +.ø,,cnbn.--tY. Then we can ded.uce

max *(øn,br, r-) <-*o,nt-z

which contradicts condition (i). This completes the proof of the sufficiency
of Theorem 3.

Proof of tke necessity. I,et S be a compact set i1 fl', which.is the
boundary oi a srnooth slrictly convex set. The necessity of condition .(ii)
follows fiom Theorem2 in [6J. In ord:r to prove the necessity of condition
(i) we shall use the mappiÀS,/ : S - C of the set S onto the unit circle
defined by parallel supporting lines.

T.et þ eS and e>0 be a giv er'
d.p the unique supporting line of c po
d[ the line tangent to the unit circ to
to which C is on the same side as þ.
unique contact-point of d.j, with the circle C. By a well-known theorem
(see- - l2l p. i3)/: S * C is a continuous mapping. .T,et Çt
ànd -póitis 

oá itte circle C such that the arcs f (þ)q, anð'

Í.(þ)q gl| ': BY the cgntinr
is a U of þ such that f
to the open arc qLqz (i.e. the arc q

There is then a à(1, .) > 0 such that f

loss of generalitY that the
S n DØ,- S(1, .)). I.et u be
d', and d', of conv S through
tangent iine through f(r) to
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the circle C (hence d, is parallel to this tangent line) and d.í be the lan-
gent to the unit circle througl, Í(t) (hence parallel to d.,). Denote with u
the intersection point of the lines d.i, and d.í. Since s is in the interior
of the triangle rut we have the inequality *zsl ) *rut and therefore

max * (r,s,t) 2 +.rst > Xrut : +f(r) uf(t) ) æ - e.

The last of these inequalities follows from the fact that f (r) and /(l) belong
to the arc qrf (þ)q, of length 2e. Wittr this we have proved the necessity
of condition (i).
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MOUVÉMENT CÉNNNAI, D'UN PROT'IL DANS
UN FI,UIDE IDÉAI, EN PRÉSBNCE D'UNE PAROI
PBRMÉABI-,E II.L,IMITBB. CENRE VARIATIONNEI,

ET APPROXIMATION PAR UNE METHODE
D'ÉLDMBNTS FINIS

pa¡

TITUS PE'TRIITA

(Cluj-Napoca)

Received 21.XII.1978 I,e présent travail considère l'écoulement p1an, potentiel, sans circula-
tion d'un fluide parfait incompressible, écoulement ploduit par le déplace-
ment général d'un profil, en présence d'une paroi illimitée perméable.
I,e fluide est supposé en repos à f infini.

Pour l'étude de cet écoulement qui conduit à un problème aux limites
de type mixte (Dirichlet et Poincaré) pour un domaine doublement connexe
nous 11ous plaçons dans un cadre fonctionnel convenablement choisi. -
Cette méthode a été déjà utilisée, par J. r.. crÁ.varrDrNr, r\r. pocu et
G. TOTTRNEMTNE dans le cas particulier de l'écoulement aútour d'un obsta-
cle fixe, qui conduit à un problème aux limites pour un domaine simple-
ment connexe [1]. Nous a11ons suivre pour notre problème général la tech-
nique proposée par ces auteurs, sans être intéressés dans tous les détails
théoriques, moins importants pour la pratique.

I,'approximation effective de la solution par une méthode d'éléments
finis aussi que 1es problémes de convergence et d'estimation de l'erreur
qui s'y posent constituent l'objet d.u deuxième paragraphe d.u travaiT.

Enfin, une fois d.émontrée 1'existence et I'unicité de la solution, on
fera ,,a posteriori" quelques remarques sur des problèmes mathématiques,
auxquels nous serions conduits par l'abordée du problème initial avec des
méthodes de I'analyse classique.
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