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Abstract. In this paper we apply the metod of v. prax ([4], [5])
to the study of the couvergance of a modified secant method. We prove
{hat the rate of convergence of this method is of the form

w(?) = % (Hr + d — 24/H?a® — Hdr)

where a, d, H and 7 are positive numbers depending on the initial condi-
tions. We also give sharp estimates for the distance |jx, — x*||, # =1,

2, ...., where (x,)n-1 is the sequence obtained by the modified secant
method and x* is its limit.

1. The Induetion Theorem

The method of Nondiscrete Mathematical Tnduction, introduced by
v. prAK [4], has allowed a new approach in the study of the convergence
of iterative procedures. An important role in this approach is played by
the notion of the rate of converganuce 5], [6]. Let T be an interval of the
form T ={reR; 0 <7 2 1, for some positive 7, (l.e. T =10, Yol)
Tet o be a function defined on T. We define by reccurence:

wd(r) =7, ot ti(r) = o(0"(7)), nw=0,12 ...

pERINITION 1.1. Thz function o, defined on T, 1is called a rate of
comvergence, if it satisfies the following properties :

(1) o maps T into itself;

(2) for each r< T the series > w(r) is convergent.
n=0
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I'he sum of the above series, o(r) = w"(r), obviously satisfies the

<

=

following functional equation:

(3) o(r) =7 + o{a(r)).

We shall justify the name of ,,rate of convergence”’, given to the function
o, after stating the Induction Theorem. *

Let (X, d) be a complete metric space. If 4 is a subset of X, and x an
clement of X, we shall denote by d(x, 4) the g.1.b. of the set {d(x, )
vy « A}. For any positive number » we shall denote by U(4, 7) the set
{xe X;d(x, A)S r}. If xis an element of X, we shall write for simplicity
U(x, ) instead of U({x}, 7).

Iet us denote by 1’ the interval ]0, 7,] of the real line, and for each
re T, let Z(r) represent a certain subset of X. We shall use the follo-
wing notation for the limit of the family Z(.).

(4) zoy= U2z~

>0 ¢<s
Now, we can state the Induction Theorem [4].

raEOREM 110 If

(5) Z{r) C U (Z(e(), 7).
for each v e T, then
(6) Z(r) C U (2(0), ofr)),

for each 7 e 1.

We shall sketch below how the method of nondiscrete mathematical
induction can be applied to the study of the convergence of iterative pro-
cedures. Iet F be a mapping of the complete metric space X into itself,
and let x, be an element of X. Suppose that we can attach to the pair (F,
x,) a rate of convergence o on the interval T = 10, 7,], and a family of
sets {Z(r)},er, such that the following relations be fulfiled:

(7) Zoe Z(re),
(8) xe Z(r)= F(x) e U(x, r) N Z(w(r)) for cach r e T.

Then the Induction Theorem assures the fact that Z(0)# &. On the
other hand (8) implies that cach element £ of Z (0) is a fixed element of the
mapping F ie. F(E) = E. It also follows that via the iterative procedure:

(9) X1 =1""(Xn), n = 0, 1, 2, A

We obtain aj sequence (%,)a=¢ Which converges to an element x* = Z(0),
such that the following inequalities are satisfied:

(10) d(xn-i-l; xn) -S— (4‘)”(70): n = 0: 1) 21 L
(11) d(x, < o(o(r) n=0,1,2, ...
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From (10) one obtains the following estimates of the distance between the
n' th iterate x, and the ,starting point” a,:
(12) A(%,, %o) S olrs) — o(6"(7o))-

Vi =

T'he relation (11) will be called an apriori estimate fo the distance bet-
ween the #' th iterate given by the procedure (9) and the fixed point x*. .
The name ,,apriori estimate” is justified by the fact that one can compute
this estimate before performing the iterative procedure.

Suppose, that for a certainne {1, 2, ... .}, one has already computed
e O . . - il (O '

(13) o & Z{d(%y Fnm1))s

‘then it can easily be proved that the following inequality' is satisfied:

(14)  d(»

The above estimate will be called an ,,aposteriori estimate”, because it

1 x*) S G(Q)(d(x”, x”—l)) = 6(d(xn’ x"—l)) . d(xn’ x"—l)'

can be computed only after performing the iterative procedure (9). The

aposteriori estimates are generally better than the apriori ones.
Summing up what we have stated above, we get the following:
Corollary. If the conditions (7) and (8) are satisfied, then by the itera-

tive procedure (9) one obtains a sequence (X w o which converges to a
n

fixed point x* of the mapping F, and for each n = {0, 1, 2, ...} the inequali-

ties (10)—(12) are fulfiled. Moreover, if for a certain ne {1,2,3, ....}
‘the condition (13) is satisfied, then for this », the inequality (14) is also

futfiled.
The above corollary will be the basis of the prof of the Theorem 3.1,

.concerning the convergence of the modified secant method, which will

be given in Section 3.

2. Divided differences of an operator

The notion of divided difference of a (nonlinear) operator is an exten-

.sion of the usual notion of divided difference of a function, in the same sense

in which the Eréchet derivative of an operator is an extension of the classi-

cal notion of the derivative of a function. This notion was introduced by

7. SCHRODER [8] and was used by A. SERGEEV [9] and 7. scamint [7]

to the extension of the secant meathod for ths iterative solution of the non-

linear operatorial equations in Banach spaccs.

Let E and F be two Banach spaces. We shall denote by L(E, I7) the
Banach space of all linear and bounded operators, from L into F. Let f
be a (nonlinear) operator from E into F, and let x and y be two different
points of the domain of f.

pErINrrIoN 2.1, A Dbounded linear operator Ae L(E, F) is called

a divided difference of the operator f on the points » and v, if :

{15) Ax —y) = flx) = f¥)-
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In the scalar case the divided difference of a function is unique, but in
the general case this assertion is not true. Let us examine as an illustration
the case where E — F — R2. In this case, a nonlinear operator f is charac-
terized by two real functions of two real variables f, and f, ie.

(V) » :( ) e R, f(%) :(ﬁ((: :2;)

'hen each of the linear operators 4, and A4, given by the following two
matrices satisfy (15):

X1

Xg

Ful#wy ¥a) — filyn 99) fulxy, x) — fil#, )
¥y — Y1 X — Ya
.
fol#r, ¥y — folda, a) Tol#a, x) — folrn, Ya)
¥ =N Xy — Ya
Alxn x) — filyn, %) Fily %) — iy ¥s)
¥ — N Fo — Y2
A, | =
Jal#n, x) — folyr, %) folyu %) — falyn, ¥a)
¥y — N Xy — V2

1f f is differentiable and its Fréchet derivatives f’ is continuous on the seg-
ment [x, y] = {tx 4 (1 — t)y; t = [0, 1]}, then the linear operator given
by j
1
Ay =\ f'lx + Hy — 2)db

: 0
also satisfies (15). That means that any of the three linear operators A,
A,, A, are devided differences of the operator f on the points x and y.
Morcover, any convex combination of 4,, 4, and 4, is also a divided diffe-
rence of f on the points x and y. It we have two divided differences ol / on
the points x and y, represented by the matrices A and B, then the matrix,
C, having the first line equal to the first line of 4, and the second line equal
to the second line of B, also represents a divided difference of f on the points
x and .

Iet us now return to the general case. Concerning the existence of the
divided differences see [1]. Concerning other examples in some concrete
spaces see [10]. Let us suppose that the closed sphere U = U(x,, m) is
included into the domain of the operator f, and let us denote by D the sct
D={(x, »)eUxU; x#y}. We consider the mapping :

D= (%9 lxy; fle LE F)

where, for any pair (¥, ¥) e D, the linear operator[x, y; /] is a divided
difference of f on the points x and y ie.:

(16) [x, 35 fllx — ) =flx) — f(¥)
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In [9) one assumes that the mapping (%, )= [x, ¥; f] is symmetric i.e.
[, y; f1= [y, #; f]. In [7] this condition is no longer required. Let us
remark that in our example 4, and A4, are not symmetric, while 4, and

1 1
— A — A, are.
z 1+2 2

Tn both of the above cited papers, one supposes, in order to assure
sufficient conditions for the convergence of the secant method, that the
mapping (x, y)— [#, y; f] satisfies a Lipschitz condition at least. We shall
write this condition under the form:

(17) Iz v £ — (o, 05 fINS Hllx — ull + |y — ol)-

It is easy to prove that if the above inequality is fulfiled for all x, v,
u, ve U = Ul(x,, m), with x# y and u#+# v, then for each x e U there
exists the limit lim [x, y; f], and it equals the Fréchet derivative f'(x).

Yy

We have then:

(18) If (%) = f )= 2H|lx =yl % » € U

The above remark allows us to take by definition [x, x; f] = f'(x)
for each x e X. Thus (18) implies (17).

Reversely, if the operator f is Fréchet differentiable for each x e U,
and if (18) is satisfied, then there exists a mapping U x U= (x, y)—
— [%,v; fle L(E, F) which satisfies(16) and (17). We can take, for
example, (!

1
ey 1=\ Jte 2y — )
[i]
I'his remark will be used to obtain the theorem concerning the comn-
vergence of the modified Newton’s process [3] as a consequence of the theo-

rem concerning the convergence of the modified secant method wich will
be proved in the next section.

3. The modified secant method

The same as in the preceding section, let f be a nonlinear operator {rom
the Banach space E into the Banach space F, and let the sphere U =
= Ul(x,, m) be included into its domain of definition. We supposc that
there exists a mapping.

U x Us(x9)— 155 /] < LE F).

which satisfies (16) and (17). Let %, be a point of U, for which the linear
operator [x,, %,; f]is boundedly invertible. The modified secant method,
we are going to study, conmsists of the following interative procedure :

(19) N1 == Xy — [x(): Xos f:l—l f(:\'n)l n = 011! 21 B



208 F. A. POTRA 6

For the study of the convergence of the sequence (%4)nmo yielded by
(19), we need some fesults concerning the behaviour of such a sequence

in the particular case ‘where fis'a certain real quadratic polinomial.

LEMMA 3.1, If d, H, g, and r, are positive numbers satisfying the condi-
Lions

(20) 5 1 Wrab Ao+ o) s %

then the function

(21) olr) = 7;_ (Hr + d — 24/H?a® + Hdr)

is a rale of convergence on the interval T =10, r,], and the corresponding
Ffunction o is given by

a
i 22 = 2 — I
(22) ofr) \/a +4r—a
where,
1
(¢ = — — Hg,)* — 4Hd.
(23) 0 = @~ HyoP — 41,

Proof. Rirst, we observe that the inequality (20) implies that the quan-
tity under the square root sign from (23) is nonnegative. Let us consider
the real polinominal

(24) flx) = H{x* — a%).

Tt is casy to prove, that for any statting point %o, chosen in the interval
la, -+ oo [, and for any positive number d, belonging to the interval [f'(x,),
|- oo, the iterative procedure

(25) Xyr1 = Xy —fn(x)/d
yields a sequence (xn)fgo, decreasingly converging to the root a* =a
of the equation f(x) =0

Sctting for any 7.« 10, 7,]

(26) Ky = %o(r) = \/42 "{‘%7’.

we have xy > x%, and f(x,)/d = 7. Taking o(r)= f(x,)/d and o(r) = %, —
__ x* we obtain the formulas (22) and (23). Jl
Denoting %4 == %,(*e) + ¢o» and computing ‘the divided difference of

the function f on the points x4(r) and %, we obtain
(27) (%0, %93 f1=14.
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Taking into account the fact that f is a convex function, we infer that

d z f'(x%o(re)) Z f'(%(r)) for any # & 10, 7o].

Thus, for each 7 < 10, #,], we shall obtain, via the iterative procedure
(25), a sequence (%,)n—0, decreasingly converging to x*. In this case it is
clear that the functions o and o, defined as above, represent a rate of
convergence and the function related to it. The following equalities are
obviously satisfied :

(28) %o — %, = a(r) — o("(r)),
(29) Xy — Xpt1 = (L)"(r),
(30) x, — x* = o(o"(7)).

Now, we are able to state our result concerning the modified secant
method :

ruroreM 3.1. If the conditions (16) and (17) are satisfied for all
%, v, %, v e U= Ulx,, m), and if the following inequalities :

(31) I[%o, %o; f17IT12 4,
(32) llxo — Zoll £ qo»

(33) (%0, %o FI7 Y xa)ll = 70,
(34) (Wre +4Ee T 79" 5 5,
(35) m = ol7,),

are fulfiled, then the sequence (%,)n=0, obtained by the iterative procedure
(19), converges to a root x* of the equation f(x) = 0, and the following
inequalities arve satisfied :

(36) %, — %oll £ a(r) — a(w*(ry), »=0,12 ...
(37) lx, — 2% € o(w"(ry), #n= 0,12 ...
(38) “xn . X*” = G(Hxn | xn—l“) Wy “xn _xn—IHJ n = 1: 2: 3: ey

where « and o are given respectively by (22) and (23).

Proof. The proof is based on the Corollary stated in Section I and
on the Temma 3.1 proved in the present section. The iterative procedure
(19) is of the form (7) with F(x) = x — (%, %o; f1"Y(%), for x & U.
Taking into account the inversability of [x,, %,; f], it follows that every
fixed point of F is a root of the equation f(x) = 0. We attach to the

7 — L'analyse numérique et la théorie de l'approximation — Tome 8, No. 2, 1979
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pair (F, x,) the rate of convergence « given by (22) and the family of
sets:

Z(r) = {x e E; ||[xe %o ST S 7, |2 — x|l S a(ry) —
—a()}, 7e10, 7]

It is clear that z(r,) = {,}, so that condition (7) of the above mentioned
Corollary is satisfied. We shall prove that condition (8) is also satisfied.
Let x be an element of z(r), and let

(40) ¥ = F(x) = x — [x0, %03 [1(2).
Using (3) we can write
2" — %ol S [l2" — =ll + llx — %ol S 7 + o(ry) — o) =

= g(ry) — olw(r)).
From (16) and (40) we infer that

) =f(x) — f(%) — [%0, %05 fIx" — ) =

= ([«', x; f1 — [%0, %05 D& — ).

According to the conditions (17), (31) and (32), the above equality yields:

(39)

~

(41)

10, %0 SIS ST @l — soll + 11 — #l) + llzg = Zal)ll# =1L
Using (22), (23), (39) and (40), we obtain

[0, %05 [I7Y (XM S o).

This relation together with (41) imply that 2" =Z(w(r)) so that condition
(6) is also fulfiled. It follows that by the iterative procedure (19), one
obtains a sequence (,),—o Which converges to a root x* of the equation
F(x) = 0. Moreover for each # < {0, 1, 2, ...} the inequalities (10)—(12)
are satisfied. But the inequalities (11) and (12), correspond respectively
to the inequalities (37) and (36), while from (10), (12), and from the fact
that o is an increasing function on ]0, #,] we infer that

%01 — %ol £ o(ro) — olllx, — %al),  #=123 ...

The above relation shows that x, ;e Z(||x, — %,_4||) for n =1, 2, ,3, ...
so that the condition (13) of the Corollary is fulfiled. Consequently the
aposteriori estimate (38), which correspond to the inequality (14), will
be satisfied for n =1, 2, 3, ... . 3

Concerning the hypotheses of the above theorem, we have to note
that, in practical applications, the number g, from the left side of the
inequality (32) can be taken as small as wanted, because having an ini-
tial approximation x, one can take for x, a small perturbation of it
(for example x, = (1 - &)%,). The key condition of our theorem is re-

—r=
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presented by the inequality (34). This inequality can be §atisfied only if
7, is small enoguh, that is, if the initial approximation x, 1s good enough.
However, we can prove that the condition (34) is in some sense the weakest
possible. Indeed, let 4, H, g, and », be some positive numbers, and let
us consider the real function f given by the formula

1
f(x) = Hx?* — dry — i (@ — Hgq,)?

he divided difference of the function f, will obviously satisfy (16) and
(17). The inequalities (31)—(33) are also verified, if we take
d — Hgq, _d+Hq,,.

x, = & et g =
2 2H o 2H

7 1
However, if the condition (34) is not verified, then dry > = (d — Hgy)%

and thus the equation f(x) =0 has no solution. ‘
In the following we shall show that the estimates (36) —(38), obtained
in Theorem 3.1, are, in some sense, the best possible.

PROPOSITION 3.1. The estimates (36)—(38) are sharp in the follo-
wing sewse : for any positive numbers d, H, qo and 7o, satisfying the ine-
quality (34), there exisls a function f and a pair of points (%0, %o) which
satisfy the hypothesis of Theorem 3.1, and for which the inequalities (36)—
—(38) are verified with equality.

Proof. The proof of the above proposition is a consequence of the
proof of Lemma 3.1.

From (36) it follows that ||x* — Xol| S ofro). We shall prove that x*
is the unique root of the equation f(x) =0 in a neighbourhood of the
point x,. Let ¥ denote the open sphere with centre x, and radius o(ro) +

4 2a.

PROPOSITION 3.2. If 'the inequality (3%) from Theorem 3.1 is strict,
thew the root x*, whose existence is guaranteed by this theorem, s the unique

solution of the equation f(x) = 0 in the set unNv '
Proof. First, we note that if the inequality (34) is strict, the a > 0, so

that 2* « UN V. Iet Y* b2an element of UN 17, such that f(y*) = 0.
Using (16) we obtain the relation :

(41) 2% —y* = [, 203 F1 (%0 o f1— [o% %5 SO — 5%,

Now taking into account (17) we obtain :

(42) le* — y*Il % (Ilgo — #*[ + 10 — y*Mllx* — *[I
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On the other hand, from (22), (31) and (32), we infer that
(43)

{

|

(%o = X[+ [|%6 — ¥*|)) <ll-z- (20(ry) - 2a + g;) =1 ,

Finally the inequalities (42) and (43) imply that x* = y* so that the

proof of the proposition is completed.

4. The, modified Newton’s method

As we have anticipated in Section 2, the results concerning the modi-
fied Newton’s method can be obtained, as a limit case, from the results
concerning the modified secant method. In the following, we shall trans-
cribe the results obtained in the preceding section for the case where
Xy = %4 and ¢, = 0.

~ 1EMMA 4.1. If d, H and r, are three positive numbers satisfying the
mequality ;

(44) 4Hr, = d,
then :
(45) o, (r) = % (Hr 4 d — /@ — 4Hd (r, — 7))

18 a rate of comvergemce om the interval T = 10, 741 and the corvesponding
function o, is given by :

(46) or) = ZLH (War =4 Hd(ry —7) — o/& — & Hdry).

Ncw, as in the preceeding two sections, let f be a nonlinear operator which
maps the sphere U = U(x,, m) of the Banach space E into the Banach
space F. We suppose that f is Fréchet differentiable on U and that the
condition (18) holds. Then, according to the remark made in Section 2,
there exists a mapping ‘

UxUs (x9) e x5/ e LE F)
such that (16) and (17) hold. Moreover for each v « U we have [%, x; fl=
= f'(%).

Iet us suppose now that the Fréchet derivative f'(x,) is boundedly
invertible. We may then consider the following iterative procedure:

(47) Ant1 = X — [f'(xo)]“lf(x,,), n = 0, 1,2 ...

which is called the modified Newton’s method. This procedure may be
regarded as a limit case of the modified secant method so that from.
Theorem 3.1 we can derive the following theorem :
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THEGOREM 4.1. If condition (18) holds for each x, y e U = U(x,, 1)
and if the jfollowing inequalities :

(48) |[f (%) 1721712 4

(49) N (o) 172 ()1l S 70,

(50) 4Hr, < d,

(51) mz o) = = (4 — & — 4 Hdr,),

ave fulfiled, them the sequemce (%,)n-o obtained by the iterative procedure
(47), comverges to a root x* of the equation f(x) =0, and the following
mequalities arve satisfied :

(52)  |la, — ol = o1(re) — ax(wn(?0)), n=20,1,2, ...,
(53)  lx, — x*|| = ay(wi(ry)), n=0,1,2 ...,
(54> ”xn . x:l:“ é Glll(x” - Af‘"—ln) - Hxn - X"——lﬂ: n = 1’ 2: 3; ey

where «, and o, are given respectively by (45) and (46).

From Propositions 3.1 and 3.2 we obtain the following two proposi-
tions, concerning the sharpness of the estimates (58)—(60) and the uni-
queness of the root x*:

PROPOSITION 4.1. The estimates (52)—(54) are sharp in the follow-
wing sense : For any three positive numbers d, H and v, satisfying the inequa-
lity (50) there exists a function f, which satisfies the hypotheses of Theorem
4.1, and for which the inequalities (52)— (54) are verified with cquality.

PROPOSITION 4.2. If the inequality (50) of Theorem 4.1 1s strict,
then the voot x*, whose cxistence s quaranteed by Theovem 4.1, is the unique

solution of the equation f(x) = 0 in the set U () V', where v s the open
sphere with center x4 and radius o,(vy) + 2a.

In the end, let us note that the results stated in thissectionrepre-
sent a slight improvement of the results obtained by us in [3]. Nanemely
the condition (18) of the present paper in weaker than the condition
If(x)|l £ 2H, x « U, imposed there. Moreover the aposteriori estimate
(54), from Theorem 4.1, is new.
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