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1. Let us consider the operator equation
{1) B, o) =0,

where P: X X M — X, M is a normed linear space, and X is a Fréchet
space [1], P being continuous.

The existence and unicity of the solution x*(x) of the equation (1),
using the iterative method ‘

(2) ypr = %, — [aP(%,, a),

where I = [P’(x,, «)]-1, was studied, using the principle of the majorant
of 1. v. kANTOROVICH [2], in the case of a complete normed linear space
X. This study was taken again by B, JANKG [3], using the method of
successive approximations and the generalized method of Newton-Kan-
torovich, where X is a space as above.

Tn, both cases the Fréchet derivative of some order is used, to solv ~
the problem. ‘

In this paper we take again this study, considering a complete super-
metric space X, using the concept of divided difference, which is much
more general than the notion of Fréchet derivative,

’ (o) -
(2) g1 = Xy — [Px”. ””—1] IP(xma)

2 Tet P: X X M —X be a nonlinear operator which has partial
divided differences in respect to «x and «, X and M being as above.
(@)

We denote by px(P) and pxxu, x(Pst, »») the generalized norms
of the operator P and of its partial divided difference with respect to x,
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supposing that o constant, We also denote by pxxa, X(Pf:()l)' a(z,),the»
generalized norm of the partial divided difference of the operator with.
respect to «, supposing x constant.

For the partial divided difference operator, of a partial divided dif-
ference, we will use the notation

(o)

(@) _ play
(P, 22) 50, .0 = P, ), 40
(o) (%) _ pla, %)
(P,(l), x(2))a(l)_ o2 = P,(l)’ #9)ofD), 2
and for their generalized norms 1
: (a0
B ixscaep, x (Ph, o, o)

" (e, %) : s
Pxscan, x(P.5 o olt), )

respectively.

Since they are important for our study we recall here two theorems.

[4] about the existence and the unicity of the solution of the operator
equation

(3) x = U(x)
obtained by the iteration ‘
(3 Xy = U().

This equation is majorized, in the sense of the definition given in [2],
by the real equation '

(4) 7= V()
whose solutions are obtained by the iterative method
(4 Zpp1 = V(2)

THEOREM A. If the equation (3) is majorized by the equation (4) whose

stmallest root is 2* < [z, 21, then 1t has a solution x*, verifying the com-
dition

px(a% — ) < 2* — 20 <2 — 2,
and which is the limit of the successive approximations [3']

THEOREM B. If the comtinuous operator U:X — X has divided dif-
ferences, X being a complete supermetric space, and V s a continuous Junc-
tion defined in [z, z'], and if the comditions
(i) px. x(Usm, ,@) < V), 2, V& for which

exa) — %) < 2 — 2y < 7 — 7,
(i) Vizo) 2 20 V(') €2
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are satisfied, then from the unicity of the root of the equation (4) in
(z, 2'), it follows the unicity of the solution of the equation (3) from S
defined by ‘

px(x — %) < 2 — 2
If this solution exists, it is the limit of the succesive approximation (3'),
for any initial approximation %, e S.

3. In conection with the operator equation (1) we prove the fol-
lowing

THROREM. If the equation (1) is majorized by the equation

(1) z=1T1( B)

where V(z, B) is a comtinuous veal function defmed’.in the rectangle 2, <

!

<2<, By B < B, the conditions
1% lpx (xg — P(%0, @q)) < T (20 Ba)) — %o

(C] (Bo)
2° PXxM,X(P:(‘;), x(g)) < l/,(l.)] L2 for

ox(x? — z)< A — 2y <2 — 2, (=1, 2)
3% Pxx, X(P(T;)), a(Z)) < T g("f) 9(2))

w@n (8, )

4. 0y, x (i), s@am, o@) SV e, a2
for ox(x — %) <2 —2y 2 — 2
and pu(x — o) < B— Bo £ B — Bo

ave satisfied, and asswme that equation (1') has a solution for B e [Bo B'L
then the equation (1) has a solution x*(«) for o &S, defined by pylo —
— a,) < B — P, This solution can be compuied by the method of succesve
approximation. It is unique in py(¥ — xo) < 2 2y if the equation (1)
has unigue solution z* e (zq, 2'). -

Proof. To prove the existence of the solution of the equation (1)
we use the theoreme A. We shall show that the conditions 1° and 2°

hold for any « and f.

(5)
ex(xo — P(xe, @) < ex(%o — P(x0, %q)) + ex(P(xg, &) — P(x,, &%o))-

Since

P(xy, ) — P(x,, og) == P‘(:,“)a.(“ — ay),
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and taking in account the conditions 1°, 3° the relation (5) becomes

ox(%o — P(xo, ) < V(zor Bo) — 2o + VEs(B — Bo) =
= V(20 Bo) — 20 + V2o, B) — V(zes Bo) = V(zor B) — 2o- .
Then

@  _ play () e
Py o =P jo+ P, o — P o=

_u () (@, x)
=P} @ 1 Py s, o(* — *o)
and
(@) (@) ) _
oxxn, x P @) < Vi o+ Vi g, 6B — Bo) =
_ 1By @) B @
= Vi o+ V0,0 — V0 e = Vo 0

Using theorem B all assertions of the present theorem follow ime-
diately.
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