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1. In the paper [2] it was studied some properties of triharmonic func-
‘tions.

The purpose of this note is to do analogous properties for the solutions
of equation Atw = 0, where A is Laplace’s operator. |

Yor casily writing, and for simplifying the calculations we consider
the case of functions of 3 variables, although the results may be, as well

as, made for the functions of # > 3 variables, Also, instead of the partial

derivatives we use the indices (E.q. ? = u,, etc.|.
b WA x

Let D C R be a bounded domain, with the boundary I'. We cousider
the solutions of the equation

m . L A =0

in the domain D, where A is Laplace’s operator

2. In this section we deduce from the solutions of equation (1) some
triharmonic, biharmonic and harmonic functions in the domain D.
It holds the following

THEOREM 1. If w = w(x,y,72) 1S & solution of equation (1) then the
Sfunction

(3) w, — % (x = a)Aw

is trikarmonic, for any (a,y,2) eD.
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Proof. We show that
(4) A3[wx—%(x—— a)AwJ:O.

For this we use the linearity and omogenity of the operator A3, We have-

successively

Aa[w, = % (x — a)Aw] = Avw, — % AY[(x — a)Aw] = Adw, —
= %Az[(x — A)A*w -+ 2Aw,] = Adw, — %A[(x — Q)A%w - 20ty |-

+ 2A%w,] = Adw, —% [(x — a)Atw 4 2A%w, 4 4A%w,] = Adw, —

— % (x — a)Atw — Ady, = 0,

because w is a solution of equation (1). Thus the Theorem is proved.
Also, we have the following

| THEOREM 2. If w = w(x,y,2) is a solution of equation (1) then the

Sunction
. w4 1 1 yalg:t ol 1 !
ey 15 e it LN
(5) v — 5w — 2 (¢~ a)Aw, + Lz apare

is biharmonic, for any (a, vy, z) e D.
Proof. We must show that

Aw, -I—214 (x — a)2A2w] =0.

(6) A?[wxf — %Aw. o % (?.T a)'

We have successively

1 1 14/ 1
A2 —_ 2 —_ 2y — Slx — — = £ il
[w,, . Aw s (x — a)Aw, - % (x a)ZAzw] A2y, . Adw

— 2 Al(x — a)Atw, + 28w,,] + o AL2A%W |- (3 — @A+ 4(x — a)Atw,] —

= A, — %A%w — % [(x — a)A%w, + 209w, + 2A%w,, ]+ 214 A[2A%w +
& @ A - @At = A, — < v L[ o)avw,
+ 28%w,, 4 2A%, ] +214 [28%% + 20% + (x — At 4 4(x— a)A3w,"—}—
+4(x — a)A%w, | 8A%w,,] — Atw, — S8 — L Ay,

4 g 1 _ 1 1
~3 Adw,, + 5 Ay - o (%~ a)*A*w + 5 (x — a)Ad%0, + 3 Aw,, =0,

because w is a solution of equation (1), therefore the Theorem is proved..
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Remark 1. The Theorem 2 may be demonstrated and by using the Theo-
rem 1 from [2] for the triharmonic function w, — —(l;- (x* — a)Aw.
Analogous, it holds the following

THEOREM 3. If w = w(x, y, 2) is a solution of equation (1) then the
Sunction

— %Aw, — % (x — a)Aw,, + % (x — a)A2w -

xkx

(7) ) .
¥ (% —a)*A?w, — pr (v — a)*A3w

is harmowic, for any (a, y, z) e D.
Proof. We must show that
A[wﬁ, — %wa — % (x — a)Aw,, + % (fv — a)Aw -
® + 3 (v — a)A%w, — = (x — a)aA:"w] = 0.
8 ‘ 48
We have successively

A0 — 5 By — 1 (v — )iy, + L (3 = @)w + L (v — a)ias, —

— 4_1é (v — a)3A3w] = Aw,,, — % Ay, — é [(x — a)A’w,, + ZAw,x,] -+

+ L[ — a)A%w + 2A%w,) + % [2A%, 4 (x — a)2A%w, +4(x — a)A2w,,]—

1
8

_4_1é [6(x — @)A%w + (x — a)*Atw + 6(x — a)!A*w,] = Aw,,, —

— % Ay, — % (x — a)A’w,, — Aw,_,, + é (x — a)A%w 4 %A’wﬂF + !

- %Asz T % (% — a)A%. }- % (v — a)A%w, — % (x — a)A%w —
Ly aphw — L (x — apAw. — 0
2~ 9w — S (v — apate, =0,
because w is a solution of equation (1), therefore the Theorem is proved
Remark 2. The Theorem 3 may be established using and the Theorem
from [2] for the triharmonic function w, — % (x — a)Aw.

Also, it holds and the following
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THEOREM 4. If the function w = w(x,y,?) is a solution of equation
(1) then the function

9) Arw, — % (x — a)Alw
is harmomnic, for any (a, v, 2) e D.
Proof. We have sticcessively

AlAro, — % (x — a) Aaw] — A%, — % (& — a)Aw | 20%, ] —
= Aw, — % (x — a)Atw — Adw,; =0,

which shows that the function (9) is harmonic, and the Theorem is demons-
trated.

3. In this section, by using maximum principles, we establish some
estimates for the functions of theorems from previous section.

Thus, it holds the following

THEOREM 5. Let w = w(x, y, 2) be a solution of equation (1) in the
domain D C R3, which have all partial devivatives unhil the 6-th ovder. con-

tinwous and own the boundary U of domain D. Then, for any point (@, b, ¢)
< D the inequality :

(10)
1

w,..(a, b, ¢) — % Aw,(a, b, ¢) < xnrgx {wm‘ = iy Aw, — % (x — a)Aw,, +

_I_ _1_ X — A2 ._I_ l X — 2A2¢p — 1 x — 3A3¢
8 ( a) ‘ 8 ( a) * 48 ( ﬂ) ' }
holds.

Proof. According to Theorem 3 the function (7) is harmonic in the
domain D. So, we can apply to it the common maximum principle and the
inequality (10) is obtained.

Proceeding analogous for the harmonic function (9) in Theorem 4 we
have

+HEOREM 6. Under the assumptions of Theovem 5 the following ine-
quality
(11) A2y, (a, b, ¢) < max {Nwz — % (25 a)Aaw}
N ‘
holds.
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For establishing a new result we introduce the following notations :
V= (05, W, 0., (A0) = (Aw,, M, Aw),
(B)" = (Atr,y, Attyy, Aw,), Ty (3= @, 9 = b, 2 =),
r X (Aw)” = ((x = a)Aw,,, () — D)Aw,, (s — )Aw,),
(12) r,Aw = ((x — a)A*w, (y — b)A*w, (2 — c)A?w),
b ((x— a (= B (@), = (8 — @, (= B e o)
(A2w) = (Aw,, Aw,, Aw,), T, X (Atw) = ((x — a)*A’w,,
(y — b)2A*w,, (z — c)z)Azw,), f3A3w = ((x — a)*A%w, (y — b)*A’w,
(2 — c)3A3w).
The following theorem holds
rHEOREM 7. Under the assumptions of Theorem S we have the inequality
Vyw(a, b, ¢) — %(Aw(a, b, €)'l < max|Vyw— % (Aw) —
(13) _%rl X (Aw)" + %rl A %1‘2 X (Atw) -f‘—ilz;raAﬂw :
Proof. The vector
(14)
Vyw — % (Aw)’ — % rn X (Aw)” -+ % A % 1y X (Atw) — 41"3 r A%

has as components the following functions
- %Aw, . % (x — a)Aw,, + % (x ~ a)Aw + é, (x — a)A’w, —

wxxx

1 1 > 1 1
Wyyy — 5 Dy — 5 (y — D)Awy, + - (¥ — DA + (v — b)2A%w, —
(15) — Ly — bynse,
Wigy ™
i L _1_ (z | C)SAaw
48 !

which are harmonic functions, in accordance with the Theorem 3.
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We know (see [1]) that the square of an harmonic function # is sub-
harmonic (A% > 0). Then the square of modulus of the vector (14) is a sum
of subharmonic functions, which is a subharmonic function. Now, we apply
the maximum principle for subharmonic functions, and we deduce that
the inequality (13) holds, and thus the Theorem is proved.

We finish this section with the following

THEOREM 8. Under the assumptions of Theorem 5 the inequality

Wye(a, b, ¢) — %Aw(u, b, ¢) < max{w,, — é— Aw — % (x — a)Aw, +

r
+ ;71 (v — a)tA’w — 2r1V[w,, — %Aw — % (x -— a)Aw, +-
{16) 1 1 1 1
+ = (v — a)2A2w] + = r2A [w” e Aw — r (x — a)Aw, +-
- s (v — a)%%@]}, |
24
holds.

Proof. The function

Wy — %Aw — % (x — a)Aw +2l4(x — a)fA'w

is the biharmonic function (5) of Theorem 2.

We know (see [1]) that if # is a 3-dimensional biharmonic function

‘then

{17) u — 2r,Vu 4 % riAu

is a 3-dimensional harmonic function.
Thus for the function (17), where u is the biharmonic function (5),

‘we can apply the common maximum principle, which leads us to the ine-
quality (16). Thus the Theorem is proved.
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