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SOME THEORETICAI, AND COMPUTATIONAI, RESULTS
CONCERNING THE ACCELERATED OVERRELAXATION
(AOR) METHOD

by

G. AVDELAS, A. HADJIDIMOS and A. YEYIOS

(Ioannina, Greece)

1. Introduection

Very recently wHaDjIDIMOS (1978) has introduced a new iterative
method for the numerical solution of a linear system Ax = b, where A4
is an # X # known matrix, ¥ an unknown #-dimensional vector and & a
known vector of the same dimension. By splitting 4 into thesum D — A4, —
— Ay, where D is the diagonal part of 4 and A, and A, the strictly lower
and upper triangular parts of 4 multiplied by —1 and assuming that
det (D) # 0, the corresponding A0OR scheme has the following form:

(1.1) (I — 7L)x+9 = [(1 — ) + (0 — )L + o«UJx" + oc |n=0,1,2;...

where L = D7'4,, U = D714,, ¢ = D7, I is the unit matrix of order
n, v is the acceleration parameter, w # 0 is the overrelaxation parameter
and x© arbitrary. THe iterative matrix of scheme (1.1) is given by

Lyo= (I —rLy[(1 — o) + (@ — 7)L 4 oU].

This new two-parameter method is obviously a generalization of the sor
method (since for » = w AOR coincides with sor) and it should be noted
that for » # 0 the aor method is the Extrapolated SOR (rsor) method
with overrelaxation parameter » and extrapolation one s = w/r. Without
loss of generality we shall assume throughout this paper that A=1—L —U
since by premultiplication by D! the new coefficient matrix 4 of the
original system will have this form.
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The purpose of this paper is to present some further basic results con-
cerning the AorR method when the matrix A is
1) An irreducible with weak diagonal dominance matrix
ii) A positive definite matrix
iii) An L-matrix and
iv) An M-matrix

and also to show by mumerical examples its superiority compared with the
SOR method.

2. A Basie Theorem

Here we state and prove a basic theorem which helps us to extend
and improwe the results of mADJIDIMOS (1978).

the SOR method iwith
v 2 B <2, then the aon
SPand 0 <s 21 where

THEOREM 1. Let A be a nonsingular matriz. If
overvelaxation parameter v comverges for 0 < o <
method comverges for all v and s such that o < 7
s = w/t.

IIA

Proof. By relationship (2.7) (mapjinivos, 1978) the eigenvalues »,
of the aAor method (r # 0) are given in terms of the eigenvalues v; of the
SOR metod by the expressions A, = sv,/'F 1 — s where s — ofr. If v, =
= pe®® with 0 £ p < 1, then for « <7 < B and 0 <s £ 1 we have that

| 2:]* = $%6* 4 250(1 — 5) cos 0 (1~ 5)* < (sp 4 1 — )2 —
ullirs(Li=p) Biestl

and the aAor method converges for all « < » =B and 0 <s £ 1. In what
follows we examine the extensions concerning the theory of aAor method
as was given by wuapjipimos (1978) in view of the theorem which has
just been proved.

3. Trreducible Matrices with Wealk Diagenal Dominance

THEOREM 1. Let A be an irveducible matvix with weak diagonal domi-
nance. Then the AOR method (v # 0) converges for all 0 <7 <1 and 0 <
<s 1.

Proof. In all basic hooks (see varGa, 1962 ; WACHSPRESS, 1966 ;
YOUNG, 1971) a classical theorem concerning the sor method is presented
stating that the sor method converges for 0'<<# £ 1. Thus by Theorem
2.1 above we conclude that the Aor method converges for all 0 <7 <1
and0<s=s1 ({lle0<w=rs 1). This is a corollary to the theorem of
section 3 (mapjIpIMOS, 1978) according to which the aor method con-
vergesforall0 £ 7 < land 0 < w £ 1.
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%. Positive Definite Matrices

THEOREM 1. Let A be a positive definite (veal) matvix. Then the AOR
method converges for 0 <o =7 £ 2 (o # 2). I’

Proof. Since A =T — L — U we have L = UT and also that y#4y >
> 0 for every complex n-dimensional vector y with y denoting the con]ud
gate transpose of y. If A is an eigenvalue of L,,, then for some v #

we shall have L,, v= A v and hence
(I —»L)[(1 — o) + (& —7)L + oU]v = Ay, or
(1 — ) 4+ (0 —#) L+ oUlv=xI —7rL)v.
Multiplying both sides on the left by ¥ and solving for A, assuming for
the moment that V(I — »L)v # 0, we obtain
(1 — w)vHy + (@ — )WWHLy + ovHUy . (1 — @)vHy + (0 — »)vHLy 4 ovHUy .

A= VH(I — 1L)v Uy vE Ly

Since L = UT we have

v Uy = VELTy = (VT Ly¥)T = VI Lvy* = (VILvy)*

where v* is the complex conjugate matrix of v.
Thus if we let

vHLy
= h
(4.1) AR
vHLy\®  (vHLv)* A vHEUy d. e
(42) 2 =( vHy ) e Hy vy .

-4 (o =)zt wz*

1 -7z

A

If we put z = « -+ P¢ where o and B are real we have

1 —ra 4 200 — @) — 7f

1 —ve — vpi

n =
To prove the validity of the theorem it is sufficient to show that |A| <1
for 0 <w 27 £2 (0 # 2) or equivalently that
02(2¢ — 1)2 + 20(1l — ra)(2a — 1) < 0.
Since ‘' > 0 we must show that
(4.3) o(2a — 1)z - 2(1 — 7a)(2e — 1) < 0.
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Using (4.1) and (4.2) we have that

Z 4 2% = Q¢ = VHLy L Vi Ty — VE(L - U)y — vH(T — 4)y

vHy vHy vHy i VHy =1—-——<1
vHy

since A is positive definite. This gi i i
e e ¢. lhis gives that « <¢ 1/2. Relationship (4.3) is

(4.4) ©2a — 1) + 2(1 — 74) > 0

which, we observe, is satisfied for 7 i
Gigh, serve, is satis _ = , since 2 — w > 0. =
g{\rc.::. (1 — 2a)(2 —’c‘u) > 0 which is also valid. For 1'>7é coFgrv:r’e hg (4’3)
stinguish cases. Thus if « < 0 (4.4) becomes —2a(y — co,) + 2 'S0
which is readily seen to hold. If ¢ > 0 then we have >0

—2«(7—@)-{—2—m>—«20((1’~m)—f—1'—co=(7—@)(1—2a)>0.

Thus |A] < 1 and the conver
: . gence follows. It remains t
VI(I—rL)v£0. For this we assume that v& (I—»L)v i O(.) '?‘ielilroi}c,egiﬁhgz
vE(I — yT)v
vy

vHLy

vHy

= 0 giving that 1 — »

=0, or 1—7,2:(),

which implies that 1 — 7o = 0 and 7B = 0. Since 7 # 0 we have that =20

and o = 1/7. But 1/»> 1/2 i qs
R 20(/ ok r [rz 1/2 or equivalently 2« = 1 which is not possible

Remark By theorems 3.6 (

) : : 0 (vouneg, 1971, p. 113 i
gggeg we Cim show the convergence of the aor I;netho)da;:)i 2dl<01ff t<h 15
ot f st_?1 1,}whge § = ofr. This, however does not include the case

- WO the theorem 4.1 of the present section is more general,

5. L-and M-Matriees

i Otiﬂ;oiLiu IkLet A be an L-matrixz. Then the Aor method converges for
;i Sland0 <s <1, where s — ofr if and only if the Jacobi method
converges (o(B) < 1, B = L 4 U). ’
Proof. If p(B) < 1 then b
. . y theorem 5.1 (a) (vouw
;\{1@ ]1‘au\.re ;,:hat the sor method converges for 0 (<)?'(§ 1 aﬁ:i 11?1363;@1%113121)0)
corem 2.1 of this paper the Aor method converges for 0 <y < 1 aug

gis‘? % i Elonvz-:rsely, if the Aor method converges for 0 < » < 1 and
0 2 i = I, Tllfel; £nr St? 1 we have that the sor method conver_ges for
. = . elrore C 3 T s . .

S8 £ corem 5.1 (a) (voune, 1971, p. 120) implies that

If we combine the theorem ab i
ove with the theorem of H
f(Hf‘XDJIDIMC.)S, 1978) we conclude the following more engr lse‘fﬁmn .
or L-matrices. ) T g
THROREM 2. Let A be an L-matrix. Then the aor method converges for

al 0 =7 =1 and 0 ; 7 .
o(B) < 1. 7 < o =1 4f and only if the Jacobi method coverges
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THEOREM 3. Let A be an L-matrix. Then each of the following statements
is equivalent to the other two.

S1. The Jacobi method converges.
82. The sor method conmverges for 0 <<v = 1.
83 The aor method converges for 0 27 =1 and 0 <o = 1.

Proof. From [S1|we can easily go to [S2] and |S3| by using theorem 5.2
above. By theorems 5.1 (a) (vouwge, p. 120_) and 5.2 of this paper [S2] impli-
es[S1]and [S3|. Finally |S8|implies [S1]for » = 0, © = 1 and[52| for

ranoREM 4. Let A be an L-matrix. Then, the AOR method converges
and 0 <s £ 1 if and only if A is an M-matrix.

for 0 <7 <
1+ ¢(B)

Proof. If A is an M-matrix then by theorem 7.2 (YOUNG, p.43) we have

o{B) < I and by theorem 5.9 (voune, p. 126) we conclude that the sor

2 Hence by theorem 2.1 of this paper

method converges for 0 <7 < — .
1+p(B)

2. and 0< s< 1. Conversely,
14 o(B)
& and 0 <<'s £ 1 this im-
+ p(B)

the aor method converges for 0 <7 <

if the aor method converges for 0 <7 < n
2

1 + o(B)

¢ = <1 and by theorem 5.1 (¢}( YOUNG, P.

CIf we

plies that the gor method (s = 1) converges for 0<r<

assume that p(B) = 1 then1

121) we have that the sor method does not converge for any value of #
such that 0 < # < 1 which is not true. Thus we have p(B) < 1 and there-
fore A is an M-matrix according to theorem 7.2. (vounc, p. 43).

THEOREM 5. Let A be an M-matvix. Then the AOR method converges for
0<7=<1 and O<o>§1cmdalsof071<1’<1 and 0 <o =7,

+ o(B)

Proof : The proof follows by Theorems 5.2 and 5.4.

6. Numerical examples

The following examples ensure the validity of all theorems presented
previously and in addition show the asymptotical superiority of the AOR
method, compared with the gor one. For this, we worked out specific
examples and found out the optimum spectral radii of the corresponding
iterative matrices in all cases considered. We have, to the parameters 7 and
o all the values 0 (0.01) 2 and 0.01 (0.01) 2 respectively and independently
of each other. The upper bound 2 was selected because all theorems of this
paper give only sufficient conditions for the convergence of the A0oRr method
and not necessary omes as well while in addition to that the theorem of
Kahan states that if the sor method converges, then it must be 0 <o <<Z.
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Using the untvac 1106 Computer of the University of Salonica and
with a maximum permissible relative error E = 1074, in finding the spectral
radii, we have found that:

i) In the case where A4 is the following irreducible with weak diagonal
dominance matrix

1 05 —0.25
A=1 06 1 02 1|,
—05 03 1

the optimum spectral radius of Aor method has been found for » = 1.26,
w = 1.18 and is popt(Ls, w) & 0.272 while the optimum spectral radius of
sor method is given for w = 1.24 and is pept(Le, o) & 0.327.

il) In the case where A is the following positive definite (real) matrix

i 0.4 0.4
A =104 1 0.6],
0.4 0.6 1

it has been found that popt(Ls, o) & 0.196 for 7 = 1.03 and o = 1.23 while
popt(Le, o) & 0.282 for o = 1.08.

iii) In the case where A is the following L-matrix with p(B) < 1, that
is, A is an M-matrix

1 =05 0
A4=1 0 1 —05],
—05 0 1

we have gopt(L, o) & 0.302 for 7 = 1.18, '@ = 0.90 and pept(Le, o) =~ 0.354
for o = 1.00. :

7. Final remarks

As has been seen from the numerical examples we gave in the previous
section, it is always popt(Ls, o) < popt(Le, ), that is, the aor method con-
verges faster than the corresponding sor one. This simply suggests that the
A0R method should be used in the place of the sor method, whenever the
latter is used.
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