MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 9, No 1, 1980, pp. 93-99

Table 3. An income and with a 12

THE EXTENSION OF STARSHAPED BOUNDED LIPSCHITZ FUNCTIONS by by

c. mustāta ال إجرائية وها يدول الدين أن أنه أم بالسائية برجيع المائية الم

1. Let X be a normed space and Y a nonvoid subset of X. The set Y is called starshaped I(with respect to $\theta \in X$) if $\alpha y \in Y$ for all $\alpha \in [0, 1]$ and $y \in Y$. A real function f defined on Y is called starshaped if

$$(1.1) f(\alpha y) \leq \alpha f(y),$$

for all $\alpha \in [0, 1]$ and $y \in Y$. From (1.1) follows $f(\theta) \leq 0$. In the following we consider only starshaped functions vanishing at θ. Y will denote always a starshaped set.

A function $f: Y \to R$ is called Lipschitz on Y if there exists $K \ge 0$ such that $|f(x) - f(y)| \le K \cdot ||x - y||,$

$$|f(x) - f(y)| \le K \cdot ||x - y||,$$

for all $x, y \in Y$. Denote by $\operatorname{Lip}_0 Y$ ($\operatorname{Lip}_0 X$) the space of all Lipschitz functions on Y (respectively on X) vanishing at $\theta \in Y \subset X$ ([5]) and by BLip, Y (BLip, X) their subspaces formed of bounded functions on Y (respectively on X). Denote also

(1.3)
$$BS_Y = \{f : f \in BLip_0Y, f, \text{ is starshaped}\},\$$

(1.4)
$$BS_X = \{F : F \in BLip_0 X, F \text{ is starshaped}\}.$$

The sets BS_Y and BS_X are convex cones in $BLip_0Y$ and in $BLip_0X$, respectively, i.e. f+g and λf are in BS_Y (in BS_X) for all f, g in BS_Y (in BS_x) and $\lambda \geq 0$.

For $f \in BS_v$ $(f \in BLip_0Y)$ put

1.5)
$$||f||_d = \sup \{|f(y_1) - f(y_2)|/||y_1 - y_2||: y_1, y_2 \in Y, y_1 \neq y_2\}$$

the Lipschitz norm of f, and

$$(1.6) ||f||_{\infty} = \sup \{|f(y)| : y \in Y\},$$

the uniform norm of f.

For $F \in \mathrm{BLip}_0 X$, the Lipschitz and the uniform norms are defined similarly.

2. It is well known (see e.g. [4]) that a Lipschitz function f defined on a nonvoid subset Y of a metric space X has a norm preserving Lipschitz extension F on X, i.e. $F|_{Y} = f$ and $||F||_{d} = ||f||_{d}$. In [1] it was shown that if Y is a nonvoid convex subset of a normed space X, then every convex Lipschitz function on Y has a convex norm preserving Lipschitz extension F on X. In a similar result was established for starshaped Lipschitz function [7].

This Note is concerned with the problem of extension of bounded starshaped Lipschitz functions, i.e. for $\hat{f} \in BS_Y$ find $F \in BS_X$ such that $F|_{Y} = f$, $||F||_{d} = ||f||_{d}$ and $||F||_{\infty} = ||f||_{\infty}$. The function F is called briefly an extension of f. We consider the problem of existence and unicity of such an extension.

Remark, that similar problem for bounded convex Lipschitz functions has a trivial answer: if Y is a convex subset of X, such that $\theta \in Y$, then the nul function is the only bounded convex (Lipschitz) function on Y which has a bounded convex Lipschitz extension on X. This follows from the fact that the constant functions are only bounded convex functions on X. Indeed, if $F: X \rightarrow R$ is a nonconstant convex function, then there exist two points x_0 , $x_1 \in X$ such that $F(x_0) \neq F(x_1)$, say $F(x_0) < \langle F(x_1) \rangle$. But then, since the function $\varphi: (0, \infty) \to R$, defined by

$$\varphi(t) = \frac{F(x_0 + t(x_1 - x_0)) - F(x_0)}{t}, \ t > 0$$

is nondecreasing (see [2] p. 17), it follows that

$$\frac{F(x_0 + t(x_1 - x_0)) - F(x_0)}{t} \ge F(x_1) - F(x_0) > 0,$$

so that $F(x_0 + t(x_1 - x_0)) \ge F(x_0) + t[F(x_1) - F(x_0)]$, for all $t \ge 1$. which shows that the function F is unbounded.

2a. The existence of extension. In Theorem 1 below will be shown that under some suplementary hypotheses on the function $f \in BS_v$ there exists an extension $F \in BS_X$ of f.

Firstly, we prove two lemmas.

LEMMA 1. Let X be a real normed space and f a starshaped function on X. Then, for every $x \in X$, $x \neq 0$, the function $\Psi: (0, \infty) \rightarrow R$, defined No colone is a few many of the Language in the Principal of the

$$\Psi(t) = f(tx)/t, \quad t > 0$$

is nondecreasing.

Proof. For $0 < t_1 < t_2$ and a fixed $x \in X$, $x \neq \theta$, we have

$$\frac{f(t_1x)}{t_1} = \frac{f((t_1/t_2)t_2x)}{t_1} \le \frac{(t_1/t_2)f(t_2x)}{t_1} = \frac{f(t_2x)}{t_2}.$$

Now, for a function $f: X \to R$ define, as usually, the *epigraph* of f,

(2.2)
$$\operatorname{epi} f = \{(x, \alpha) \in X \times R : f(x) \le \alpha\}.$$

LEMMA 2. A function $f: X \rightarrow R$, $f(\theta) = 0$, is starshaped if and only if its epigraph is starshaped.

Proof. If f is starshaped, f(0)=0, and $(x, \alpha) \in \text{epi } f$, then for every $\lambda \in [0, 1], f(\lambda x) \leq \lambda f(x) \leq \lambda \alpha$, so that $\lambda(x, \alpha) = (\lambda x, \lambda \alpha) \in \text{epi } f$. Conversely, if epi f is starshaped then $(x, f(x)) \in \text{epi } f \text{ implies } (\lambda x, \lambda f(x)) \in$ \in epi f, i.e. $f(\lambda x) \leq \lambda f(x)$, for all $\lambda \in [0, 1]$.

THEOREM 1. Let X be a normed space, Y a starshaped subset of X, $\theta \in Y$, and $f \in BS_v$. Then, there exists $F \in BS_v$ such that

- (i) $F|_{\mathbf{Y}} = f$, which is a sum of the sum of the
- (ii) $||F||_d = ||f||_d$,

(iii) $||F||_{\infty} = ||f||_{\infty}$, if and only if $f(y) \leq 0$, for all $y \in Y$.

Proof. Let $f \in BS_Y$ and suppose $f \le 0$ on Y. Define $G: X \to R$ by

(2.3)
$$G(x) = \inf_{y \in Y} [f(y) + ||f||_d ||x - y||].$$

The function G defined by (2.3) is starshaped and satisfies $G|_{v} = f$, $||G||_d = ||f||_d \text{ (see [7])}.$

(2.4)
$$F(x) = \begin{cases} 0 & \text{if } G(x) > 0, \\ G(x) & \text{if } G(x) \le 0. \end{cases}$$

- 5

Since $G|_Y = f \le 0$, it follows $F|_Y = f$ and $||F||_d = ||f||_d$. Obviously $||F||_{\infty} \ge ||f||_{\infty}$. If $x \in X$ is such that $G(x) \le 0$, then

$$0 \ge F(x) = G(x) \ge f(y) + ||f||_d \cdot ||x - y|| \ge f(y),$$

so that $0 \le -F(x) \le -f(y)$, for all $y \in Y$. Therefore $||F||_{\infty} = \inf_{x \in X} (-F(x)) \le \le ||f||_{\infty}$ and $||F||_{\infty} = ||f||_{\infty}$. Since the epigraph of F is starshaped, by Lemma 2, F is starshaped. Consequently, F is the required extension of f.

Suppose now, that there exists $y_0 \in Y$ such that $f(y_0) > 0$, and let F be a starshaped extension of f. By Lemma 1

$$0 < f(y_0) = F(y_0) \le (F(ty_0)/t),$$

so that $F(ty_0) \ge tf(y_0)$, for all $t \ge 1$, which shows that the function F is unbounded. Therefore f has no bounded strashaped extension, which ends the proof of Theorem 1.

Let

(2.5)
$$BS_Y^- = \{ f \in BS_Y : f \le 0 \},$$
$$BS_X^- = \{ F \in BS_Y : F \le 0 \}.$$

By Theorem 1 follows:

COROLLARY 1. Every function $f \in BS_Y^-$ has an extension $F \in BS_X^-$.

2b. The unicity of extension. By Theorem 1 and Corollary 1, every nonpositive bounded starshaped function, defined on a starshaped subset Y of a normed space X, has a nonpositive bounded starshaped extension to whole X. Furthemore, these are the only bounded starshaped function on Y admitting bounded starshaped Lipschitz extension on X.

Equiped with the norms

(2.6)
$$||f||_{Y} = \max(||f||_{d}, ||f||_{\infty}), \quad f \in \mathrm{BLip}_{0} Y$$
$$||F||_{X} = \max(||F||_{d}, ||F||_{\infty}), \quad F \in \mathrm{BLip}_{0} X$$

BLip₀Y and BLip₀X become Banach spaces (see [3]). Let $H = BS_X^- - BS_X^-$ the subspace of BLip₀X generated by the convex cone BS_X^- and

$$Y^{\perp} = \{g \in H : g|_{Y} = 0\},$$

the anihilator of the set Y in H. Obviously, Y^{\perp} is a subspace of H. A subset Z of a normed space X is called *proximinal* for $W \subset X$ if for every $f \in W$ there exists $g_0 \in Z$, such that

$$(2.7) ||f - g_0|| = d(f, Z) = \inf\{||f - g|| : g \in Z\}.$$

If for every $f \in W$ the element $g_0 \in Z$ satisfying (2.7) is unique then the set Z is called *Chebyshevian for W*. An element $g_0 \in Z$ satisfying (2.7) is called an *element of best approximation of f* by elements of Z.

THEOREM 2. Y is a Chebyshevian subsapce for BS_X if and only if, every $f \in BS_Y$ has a unique (preserving the uniform and Lipschitz norms) extension F in BS_X .

Proof. Follows from Theorem 1 in [6].

Remark. Observe that Theorem 2 remains true if the spaces $\mathrm{BLip}_0 Y$ and $\mathrm{BLip}_0 X$ are equiped with the norms

(2.8)
$$||f||_1 = ||f||_d + ||f||_{\infty}$$
, for $f \in \mathrm{BLip}_0 Y$ (respectively $\mathrm{BLip}_0 X$)

Theorem 2 is analogous with a theorem of PHELPS [8], in the linear case.

3. Now, we try to find conditions on the function f ensuring the unicity of the extension.

Consider, firstly, the case X = R with the usual norm $|\cdot|$ (the absolute value).

THEOREM 3. Let $Y = [a, b] \subset R$, a < 0 < b. A function $f \in BS_T$ has a unique extension $F \in BS_R$ if and only if f(a) = f(b) = 0.

Proof. Suppose that $f \in BS_Y^-$ [has two distinct extensions F_1 , F_2 in BS_R^- . Let $x \in R \setminus [a, b]$ be such that $F_1(x) \neq F_2(x)$, say $F_1(x) < F_2(x) \leq 0$. Suppose x > b. The function F_1 being starshaped it follows

$$F_1(\lambda x) \leq \lambda F_1(x) < 0$$
,

for all $\lambda \in (0, 1]$. In particular, since $b = \lambda_b x$ for $\lambda_b \in (0, 1)$, it follows $f(b) = F_1(b) < 0$. If x < a, then $a = \lambda_a x$, for a $\lambda_a \in (0, 1)$, and similarly, $f(a) = F_1(a) < 0$.

Conversely, we shall show that if $f \in BS_T$ is such that f(a) < 0 or f(b) < 0, then f has at least two distinct extensions F_1 and F_2 in BS_R . If f(b) < 0, then

$$F_{\mathbf{1}}(x) = \begin{cases} f(x), & x \in [0, b] \\ f(b) + ||f||_{d}(x - b), & x \in (b, b - f(b)(||f||_{d})^{-1}] \\ 0, & x \in (-\infty, a) \cup (b - f(b) \cdot (||f||_{d})^{-1}, +\infty) \end{cases}$$

and

$$F_2(x) = \begin{cases} f(x) & , \ x \in [0, \ b] \\ (f(b)/b)x, \ x \in (b, \ (-||f||_{\infty}/f(b))b) \\ -||f||_{\infty} & , \ x \in [-(||f||_{\infty}/f(b))b, \ +\infty) \\ 0 & , \ x \in (-\infty, \ a) \end{cases}$$

are two distinct extensions of f, i.e. $F_1 \neq F_2$, $F_1|_Y = F_2|_Y = f$, $||F_1||_d = ||F_2||_d = ||f||_d$, $||F_1||_{\infty} = ||F_2||_{\infty} = ||f||_{\infty}$.

^{7 -} Mathematica - Revue d'analyse numérique et de théorie de l'approximation, Tome 9, nr. 1/1980

 $F_1(x) \neq F_2(x)$ for all $x > \max\{b - f(b) \cdot (||f||_d)^{-1}; -||f||_{\infty} \cdot (f(b))^{-1}\}.$ If f(a) < 0, then two distinct extensions F_1 , F_2 , may be given, in a similar way.

Remark. The hypothesis a < 0 < b in Theorem 3 is essential as it is shown by the following example. Take Y = [0, b], b > 0 or Y == [a, 0], a < 0. Then every $f \in BS_Y$ has an infinite set of extensions in BS_R. For exemple, if Y = [0, b] and $f \in BS_Y$ is such that f(0) = 0, f(b) = 0, then it will be a finite of the first section f(b) = 0.

$$F_{\lambda}(x) = \begin{cases} f(x) & , & x \in [0, b], \\ 0 & , & x \in (0, +\infty) \\ ||f||_{d}x & , & x \in (-\lambda||f||_{\infty} \cdot (||f||_{d})^{-1}, 0) \\ -\lambda||f||_{\infty}, & x \in (-\infty, -\lambda||f||_{\infty}(||f||_{d})^{-1}) \end{cases}$$

is an extension of f for every $\lambda \in [0, 1]$.

Consider now the general case. For $x \in X$, $x \ne \theta$, the ray θx is defined by a sementary rounds not entire that any angula . Acort

By Let
$$x = K$$
 $\{x, y\}$ be also $\{x : x \in \{x\}\}$ and $\{x : x \in \{x\}\}$ be a function of $\{x : x \in \{x\}\}\}$.

If the set Y is starshaped and $y \in Y$, $y \neq \emptyset$, then $\overrightarrow{\theta y} \subset Y$ or $\overrightarrow{\theta y} \cap Y$ is a segment. In the second case put agolfor is (1 - 4), at an extraording shows in April 10 to the larger 1), at nothing

when the degree of the contraction
$$\alpha_y = \sup \{\alpha : \alpha y \in Y\}, \text{ which is the proof of the proof o$$

and $z_y = \alpha_y \cdot y$. The set $\{z_y : y \in Y\}$ is called the algebric starshapes boundary of Y and is denoted by F.Y.

Evidently, every $z \in \mathbb{F}_r^s Y$ is a limit point of Y, i.e. $Y \cup \mathbb{F}_r^s Y \subset \overline{Y}$. Since every $f \in BS_v$ is uniformly continuous (as Lipschitz) it can be uniquely extended to Y U Fr; Y. Therefore with no restrition of generality, we can suppose $F^{\underline{s}}Y \subset Y$.

THEOREM 4. Let Y be an absorbing starshaped subset of the normed space X, such that. $F_r^s Y \subset Y$. If $f \in BS_Y$ is such that f(z) = 0, for all $z \in S_Y$ $\in \mathbb{F}_{\tau}^{s}$ Y, then f has a unique extension $F \in \mathbb{BS}_{X}^{-}$.

Proof. Suppose $f \in BS_Y^-$, f(z) = 0, for all $z \in F_r^s Y$, and suppose that f has two distinct extensions F_1 , F_2 in BS_X . Let $x \in X \setminus \hat{Y}$ be such that $F_1(x) \neq F_2(x)$, say $F_1(x) < F_2(x) \leq 0$. The set Y being absorbing and starshaped, there exists $\lambda > 0$ such that $\lambda x \in \mathbb{F}_r^s$ Y. But then, one obtains the contradiction

$$0=f(\lambda x)=F_{\mathbf{1}}(\lambda x)\leq \lambda F_{\mathbf{1}}(x)<0.$$
 Theorem 4 is proved.

THE STATE OF MEMORIE ET LA PRÉDICE DE CAPPROXIMATE À BIBLIOGRAPHY

- [1] Cobzas, S., Mustăța, C., Norm Preserving Extension of Convex Lipschitz Functions, J. Approx. Theory 24 (1978), 555-564.
- [2] Holmes, R. B., A Course on Optimisation and Best Approximation, Lectures Notes in Math. No. 257, Springer Verlag, Berlin-Heidelberg-New York, 1972.
- [3] Johnson, J. A., Banach Spaces of Lipschitz Functions and Vector-Valued Lipschitz Functions, Trans. Amer. Math. Soc. 148 (1970), 147-169.
- [4] McShane, E. J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934),
- [5] Mustăța, C., Best Approximation and Unique Extension of Lipschitz Functions, J. Approx. Theory 19 (1977), 222-230.
- [6] Mustăța, C., A Characterisation of Chebyshevian Subspace of Y Type, Mathematica - Revue Anal. Num. Teor. Approx., L'Analyse Num. Teor. Approx. 6, 1 (1977),
- [7] Mustăța, C., Norm Preserving Extension of Starshaped Lipschitz Functions, Mathematica 19 (22) 2 (1977), 183-187.
- [8] Phelps, R. R., Uniqueness of Hahn-Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.

Received, 21.XII.1989.

tions plea to had in parties of a length for X on observant Perspection