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1. We first recall some notations and results from [1] and [2]. Let
X be a compact metrizable Hausdorff space. We will denote by M *(X)
the cone of positive Radon measures on X. Let S be a closed linear sub-
space of C(X) which contains a positive function. U(S) will be the set
of all elements of M*(X) which are uniquely determined by S; thus
v eU(S) provided that whenever v.e MH(X) with u(s) = v(s) for all
s S then v = yu. The symbol ¢, will denote the Dirac measure defined
by x. S will be called a Korovkin subspace of C(X) if whenever (T,)
is a sequence of positive linear operators on C(X) such that lim T,s=s
for all s e S, it follows that lim T, f = f for all f « C(X).

Let E be a locally convex linear topological space and K a com-
pact convex metrizable subset of E. A(K) will be the subspace of C(K)
consisting of all continuous affine functions on K. If & is a continuous
convex function on K then @ has a right Gateaux derivative, given by

D@(x; y) = lim QL) 0l
tlo ¢
for all ¥, y such that x e K, x + vy = K.
We will say that @ is smooth provided that for all x « K the mapping
y—+DO(x; vy — x) is in A(K).
If K is a simplex we will denote by II, the unique boundary pro-
bability measure on K representing x. j
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If @ is a strictly convex continuous function on K, S[@] will be
the subspace of C(K) generated by @ and A(K).

Micchelli has proved:

propostrioNn 1. If @ ds a strictly comvex smooth . function then
{re,]n e R*, v « K} C U (S[9]).

rurorEM 1. If @ is a strictly comvex smooth function then S[J]
is a Kovovkin subspace of C(K).

THEOREM 2. If @ is a strictly comvex smooth function on a Bauer
simplex K, then ' '

US[F]) = {2eh e RY, x « K} UM% eRY, 2 < K.

Tn fact, any smooth convex function @ has the property that @(x) =
= max {a(¥) | a < &, a « A(K)} for all x = K; this is the property em-
ployed in the proofs of the above results.

2. The purpose of this note is to show that in Proposition 1, Theo-
rem 1 and Theorem 2 the hypothesis that @ is smooth can be omitted.

We need the following

LEMMA Let K be a compact cbnvex metvizable subset of E, p a probabi-
Lity measure on K with the barycenter x = K, and f = C(K) a strictly con-
vex function. If w(f) = f(x) then p = ¢,.

Proof. Let p # ¢, Then there exists a y # %, y = supp u. Let Y
be a closed convex neighbourhood of y; % & Y. Then p(Y) < 0. If p(V) =
— 1 then the barycenter of u will be in YV, but x & Y ; thus p(Y) < 1.
We will denote u(Y) by @, 0 < a < 1. Consider now the Radon measures
defined by

ia(B) =2 u(BNY), wa(B) = = w(B N (K\Y)

for all Borel sets B (C K. Then p = pya + (1 — a)ps. Let x; be thebary-
center of g, 7= 1, 2. We have p,(Y) =1, hence %, € Y and x; # x.
Clearly % = ax, + (1 — @)%,; if x, = x, then x = %,, a contradiction.
Thus x; # %5 Now

f(#) = plf) = amlf) + (1 — aduso(f) = af(x1) + (1 — a)f(x) >
> flax, -+ (1 — a)x,) = f(x).
This is a contradiction and the proof is complete.
Now we can obtain the following improved form of Proposition 1.
PROPOSITION 2. If @ = C(K) is'a strictly convex fumciion then

Delr e RY, x < K} C US[O)).

Proof. Let x e K. It suffices to prove that ¢, = US[@]). Let v e
e M+(K), v(s) = e,(s) for all s e S[@]. Then v(k) = h(x) for all » =
< A(K). It follows that x is the barycenter of v. From v(d) = () it
follows, using the above lemma, that v = ¢, This completes the proof.
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Proposition 2 and the characterization of the Korovkin stbspaces
already mentioned enable us to obtain a generalized version of Theorem 1:

rHEOREM 3. If @ = C(K) is a strictly convex function then S[D)
is a Korovkin subspace of C(K).

Finally, using the results of Micchelli and Proppsition 2,.it is easy
to prove that Theorem 2 holds without the hypothesis that ¢ is smooth.
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