MATHEMATICA — REVUE D'ANALYSE NUMERIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 9, Nº 1, 1980, pp. 125-127

enceptarrox 1. 31 S is a swicely paper a manches franchise them.

ON SOME RESULTS OF C. A. MICCHELLI

by

the surgery of the first the mayout the I. RASA. I RASA the surgery of the surger

(Cluj-Napoca) with (E) = (V) is the month of the contract of t

1. We first recall some notations and results from [1] and [2]. Let X be a compact metrizable Hausdorff space. We will denote by $M^+(X)$ the cone of positive Radon measures on X. Let S be a closed linear subspace of C(X) which contains a positive function. U(S) will be the set of all elements of $M^+(X)$ which are uniquely determined by S; thus $\mu \in U(S)$ provided that whenever $\nu \in M^+(X)$ with $\mu(s) = \nu(s)$ for all $s \in S$ then $\nu = \mu$. The symbol ε_x will denote the Dirac measure defined by x. S will be called a Korovkin subspace of C(X) if whenever (T_n) is a sequence of positive linear operators on C(X) such that $\lim_{n \to \infty} T_n s = s$ for all $s \in S$, it follows that $\lim_{n \to \infty} T_n f = f$ for all $f \in C(X)$.

Let E be a locally convex linear topological space and K a compact convex metrizable subset of E. A(K) will be the subspace of C(K) consisting of all continuous affine functions on K. If \emptyset is a continuous convex function on K then \emptyset has a right Gateaux derivative, given by

$$D\emptyset(x; y) = \lim_{t \downarrow 0} \frac{\Phi(x + ty) - \Phi(x)}{t}$$

for all x, y such that $x \in K$, $x + y \in K$. We will say that \emptyset is smooth provided that for all $x \in K$ the mapping $y \to D\emptyset(x; y - x)$ is in A(K).

If K is a simplex we will denote by Π_x the unique boundary probability measure on K representing x.

NOTE: DE 2009 PLA L'AL SERESTRE DE US If \emptyset is a strictly convex continuous function on K, $S[\emptyset]$ will be the subspace of C(K) generated by \emptyset and A(K).

Micchelli has proved:

PROPOSITION 1. If Ø is a strictly convex smooth function then $\{\lambda \varepsilon_{\kappa} | \lambda \in \mathbb{R}^+, \ \kappa \in K\} \subset U(S[\emptyset]).$

THEOREM 1. If \emptyset is a strictly convex smooth function then $S[\emptyset]$ is a Korovkin subspace of C(K).

THEOREM 2. If Ø is a strictly convex smooth function on a Bauer simplex K, then

$$U(S[\varnothing]) = \{\lambda \varepsilon_x | \lambda \in \mathbf{R}^+, \ x \in K\} \ \bigcup \ \{\lambda \Pi_x | \ \lambda \in \mathbf{R}^+, \ x \in K\}.$$

In fact, any smooth convex function \emptyset has the property that $\emptyset(x) =$ $= \max \{a(x) \mid a \leq \emptyset, a \in A(K)\}$ for all $x \in K$; this is the property employed in the proofs of the above results.

2. The purpose of this note is to show that in Proposition 1, Theorem 1 and Theorem 2 the hypothesis that \emptyset is smooth can be omitted. We need the following

LEMMA Let K be a compact convex metrizable subset of E, \u03b2 a probability measure on K with the barycenter $x \in K$, and $f \in \check{C}(K)$ a strictly convex function. If $\mu(f) = f(x)$ then $\mu = \varepsilon_x$.

Proof. Let $\mu \neq \varepsilon_x$. Then there exists a $y \neq x$, $y \in \text{supp } \mu$. Let Y be a closed convex neighbourhood of y, $x \notin Y$. Then $\mu(Y) < \overline{0}$. If $\mu(Y) =$ = 1 then the barycenter of μ will be in Y, but $x \notin Y$; thus $\mu(Y) < 1$. We will denote $\mu(Y)$ by a, 0 < a < 1. Consider now the Radon measures

defined by
$$\mu_1(B)=\frac{1}{a}\,\mu(B\,\cap\,Y),\ \mu_2(B)=\frac{1}{1-a}\,\mu(B\,\cap\,(K\!\setminus\!Y))$$

for all Borel sets $B \subset K$. Then $\mu = \mu_1 a + (1-a)\mu_2$. Let x_i be the barycenter of μ_i , i = 1, $\overline{2}$. We have $\mu_1(Y) = 1$, hence $x_1 \in Y$ and $x_1 \neq x$. Clearly $x = ax_1 + (1 - a)x_2$; if $x_1 = x_2$ then $x = x_1$, a contradiction. Thus $x_1 \neq x_2$. Now

$$f(x) = \mu(f) = a\mu_1(f) + (1-a)\mu_2(f) \ge af(x_1) + (1-a)f(x_2) > f(ax_1 + (1-a)x_2) = f(x).$$

This is a contradiction and the proof is complete.

Now we can obtain the following improved form of Proposition 1. PROPOSITION 2. If $\emptyset \in C(K)$ is a strictly convex function then

$$\{\lambda \varepsilon_x | \lambda \in \mathbf{R}^+, x \in K\} \subset U(S[\varnothing]).$$

Proof. Let $x \in K$. It suffices to prove that $\varepsilon_x \in U(S[\emptyset])$. Let $v \in K$ $\in M^+(K)$, $v(s) = \varepsilon_x(s)$ for all $s \in S[\emptyset]$. Then v(h) = h(x) for all $h \in M^+(K)$ $\in A(K)$. It follows that x is the barycenter of v. From $v(\emptyset) = \emptyset(x)$ it follows, using the above lemma, that $v = \varepsilon_x$. This completes the proof.

Proposition 2 and the characterization of the Korovkin subspaces already mentioned enable us to obtain a generalized version of Theorem 1: THEOREM 3. If $\emptyset \in C(K)$ is a strictly convex function then $S[\emptyset]$

is a Korovkin subspace of C(K).

3

Finally, using the results of Micchelli and Proposition 2, it is easy to prove that Theorem 2 holds without the hypothesis that Ø is smooth.

REFERENCES

[1] Micchelli, C. A., Convergence of positive linear operators on C(X). J. Approximation Theory, 13, 305-315 (1975).

[2] Phelps, R. R., Lectures on Choquet's theorem. Math. Studies, Princeton, Van Nostrand,

Received 6, XII, 1979

Conference by a college with on many and I mainly in the