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1. Introduetion

Iet X be a normed space, M a nonvoid subset of X and » an e-
lement of X.

The problem of nearest poimis. Let d(x, M) = inf{||x — y||: y e M}
the distance from x to M, and let Py(x) = {yeM: ||x — y||= d(x, M)},
the set (possibly empty) of nearest points to x in M (or the set of elements
of best approximation of x by elements of M). Put E(M) = {xeX:
Py(x) # @) and Tec (M)={x <X : card (Py(x)) = 1}. sTECRIN [15] proved
that if X is a uniformly convex Banach space and M is a nonvoid closed
subset of X, tehn X\Tc(M) is of first Baire category (in particular, Tc(M)
is dense in X). sTECKIN [15] asked if this result remains true in a locally
uniformly convex Bamnach space. In [7] it was shown that the answer
is no: there exists an equivalent locally uniformly convex mnorm p on
¢o (namely, Day’s norm, see [8]) such that (¢,, p) contains a closed bounded
symmetric convex body, such that E(M) = M (such sets are called anii-~
proximinal). Another solution (fortunately, also negative) was kindly co-
municated to the author by Professor P. Kenderov: if X is a separable
non reflexive Banach space, then, by a result of TROvVANSKI [16] there
exists on X an equivalent locally uniformly convex norm p. (X, p) being
nonreflexive, by Jamgs’ theorem there exists a continuous linear func-
tional %" on X which does not attain its norm on the unit ball of (X, p).
The corresponding closed hyperplane H = (x)~%(0) is antiproximinal in
(X, p),i.e. E(H) = H. Recently xa-siNG LAU [13] proved that Steckin's
result holds in reflexive locally uniformly convex Banach spaces.

The problem of farthest poimts. Suppose further the set M bounded
and let A(x, M) =sup {||lx — y[|: yeM}. Put Qy(x) = {yeM: ||x— y||=
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= h(x, M)} — the set (possibly empty) of farthest points to x in M
and e(M) = {x =X : Q,(%) # @}. EDELSTEIN [9] proved that if M is a
nonvoid closed bounded subset of uniformly convex Banach space X,
then ¢(M) is dense in X. asprunp [1] extended this result proving that
if M is a nonvoid closed bounded subset of a reflexive locally uniformly
convex Banach space X, then ¢(M) contains a Gy set dense in X. Finally
KA-SING LAU [12] proved a similar result for weakly compact subsets of
arbitrary Banach spaces, and derived from this one, Asplund’s theorem.

Perturbed problems. Let J be a real functional defined on M. BARANGER
[2] considered the following extensions of the problems of nearest points
and of farthest points: Problem J-inf (Problem J-sup): for x =X find
YoM such that [|x — yol| + J(ve) = inf{[|x — 9]| + J(3): yeM} (=
= sup{||* — y|| 4+ J(y) : ¥ =M} respectively), and proved thaf if X is a
uniformly convex Banach space, M a closed nonvoid subset of X and
J:M —R is lower semicontinuous and bounded from below, then the
set of all ¥ «X for which the problem J-inf has a solution is dense in X.
If X is a reflexive locally uniformly convex Banach space, M a nonvoid
closed bounded subset of X and j: M—R is upper semicontinuous and
bounded from above, then the set of all x «X for which the problem
J-sup has a solution, contains a G; set dense in X. Other results along
this line were obtained by BARANGER —TEMAM [3], BIDAUT [5], EKLIAND —
LEBOURG [11].

The aim of this Note is to extend Ka-Sing Iau’s result on farthest
points of weakly compact sets to perturbed problems (Problem J-sup,
with an apropriate J). In the third section some applications to optimal
control problems of systems governed by partial differential equations,
are given.

2. The main result.

In this section we prove the following theorem :

2.1 THEOREM. If X is a Banach space, M a nowvoid weakly compact
subset of X and J: M—R is an wpper semicontinuous and bounded Sfrom
above functional, then the set of all x X for which the problem J-sup has
a solution comtains a Gy set dense in X.

In this theorem, and in what follows, by ,,weak’ we mean o(X, X'),
X' the dual of X. Our proof follows closely KA-SING LAU'S proof in [12].

Recall that if f: X—R|J {0} is a function on X, a subgradient of f
at a point x =X (such that f(x) < o) is a continuous linear functional
%' such that

(2.1) ¥y — %) < fly) — f(x),
for all y =X. The set (possibly empty) of all subgradients of fat x is
denoted by 9f(x) and is called the subdifferential of fat x. If fis con-

tintous, at x then, df(x) is a nonempty weakly compact subset of X'
(see [4]).
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For x =X put
(2.2) 7(x) = sup{|ls — Il + J(3) 1y e M},

2.2 1Emma. Let X a normed space, M a nonvoid bounded subset of
X, J: M—>R a bounded from above functional and let v X—R be defined
by (2.2). Then

(i) » is comvex and Lipschitz, with constant 1, i.e.

[7(x) — 7)) < |lx — yll, for all %, yeX ;
(ii) of «" =odr(x) then ||x')| < 1, for all x X.
Proof. (i). The functions 7,: X—R, defined by 7,(x) = ||x — y|] +

"+ J(y), are convex for all yeM, and so will be their supremum ». Now,

for %, yeX and zeM
Iz —2ll + J@) < e =yl + ly — 2l + J(@) < 1% = |} - 7(y),
so that r(x) < ||lx — || + 7(y), or 7(x¥) — 7(y) < ||x — y||. Interchanging
the roles of x and y one obtains [#(x) — #(y)| < ||x — y||.
(ii). If " edr(x), then x'(y — x) < r(y) — 7(x) < ||y — %||, for all
y eX, which implies [[#|]] < 1. Lemma 2.2 is proved.
If %" edr(x). then, by Lemma 2.2 (ii)

'y —x) = JO) =z —llx =yl = J(») = —r(x), yeM,
so that
(2.3) inf{z"(y — 2} — J(y):yeM} = — r(x),

for all x «X. The following leinma shows that the equality sign holds in
(2.3) for all x =X, excepting a set of first Baire category.

2.3 rumMa. Let X be a Banach space, M a nonvoid closed bounded
subset of X and let J: M—»R be bounded from above. If v(x) is defined
by (2.2), then the set:

F={xeX: 33 «dr(x) such that inf{x'(y — x) — J(y): yeM}> —
— (%)} ¢s of Fs type and of first Baire category.

Proof. For neN, let F, = {x =X :3% e dr(x) such that inf{x'(y—

—x)—J»):iveM} = —r(x) + i}. Obviously F = @Fn Therefore, to
n

n=1
prove Lemma 2.3, it is sufficient to show that
(a) F, is closed in X ; and
(b) int F, = O,
for all # N. _
(a). Let {x,: 2 =N} be a sequence in F, converging to a point x = X.
For ecach keN, choose x;edr(x,) such that

(2.4) inf{xi(y — %) — J(0):y =M} = —r(m)+ -

-
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Since ||#i]] <1, k<N, (Lemma 2.2 (ii)), the sequence {x1, k=N}
admits a subnet {x}, i el} o((X’, X) — convergent to an element «’
of X', with ||x'|]]<1. For zeX, we have

xiz — %) — #'(z — #)| <|xilz — x) — iz — 2)| + |%i(z — %) —

— 'z — x)| < 1% — x| + |(# — &)z — %)l
for all 7 I, which shows that the net {xi(z — %;)} converges to «'(z — #).
Since x}e dr(x), we have «'(zf — x,) + #(%;) < 7(2) (see 2.1)) so that
x'(z — x) + 7(x) < #(z), for all ze X, which shows that %' = dr(x). From
’ 1 ’
Xily — %) — J(») = — 7() + -, follows #'(y — %) — JO) = —7(x) + -
for all y & M. Therefore x =« F and the set F, is closed.
by intF, =0, n=1 2, ...

Suppose that there exist ke N, yoe F, and a ball U of center v,
included in F,. The set M being bounded there exists A > 0 such that

(2.4) ¥ =9y + My, — 2 e U,

for all 2z« M. Let ¢ = A[{(x + 1)k]™* and let 2, e M be such that
(2.5) (yo) — & < |lyo — Zoll 4 J(20) < 7(30)

and let

(2.6) %o = Yo + MYo — #0).

Since by (2.4), o= U C F,, it follows the existence of a ' = dr(x,) such
that

(2.7) inf{xg(z — xo) — J(2o) 12 M} = — 7(%o) - %

By (2.5), (o) — (%) < |¥0 — Zoll + J(zo) + & — 7(%,), and by (2.6),
Yo — 29 = (A 1)7Hxe — Zo). Therefore
r(yo)— (%) < (2 + 1)7H[%o — Zoll -+ J(zo) + & — 7(%0) <

< MM+ D2 r(xg) — J)] 4 J(20) + & — #(%0) =

= A4 1)7(w) + MA+ DT () + o=

= MA 4 )7 [—7(x0) + Jg)] — €=

< MA 4 D) (z) — %) — A[(A - DEITE - e
But

g — %o = Yo — %o + Zo — Yo = Yo — %o T N Yo — %) = (A -+ At
(o — %o),

so that

7(ve) — 7{%0) < %o(¥o — %g) — A[(A - DRI+ e = %o(Vo — %))

in contradiction to x, e 7(%,).
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Proof of Theorem 2.1. Let F be the set defined in Lemma 2.3 and
let D = X\F. Obviously, D is a G5 set and by the Baire category theorem,
D is dense in X. For xe D and % < d7(x), we have

(2.7) inf{x'(y — %) — J(3) 1y e M} = — 7{x).

Since J is weakly upper semicontinuous, the function p(y) = #'(y — #)—
— J(y), y e M, is weakly lower semicontinuous. Taking into account this

fact and the weak compactity of M, it follows the existemce of a point
yoe M, such that p(y,) = inf{p(y) 1y = M}. But then, by (2.6)

— () = %' (% — yo) — J o) = — llv — 2l = J(a) = —#(%).
Therefore, 7(x) = [|% — || 4 J(¥o), and Theorem 2.1 is proved.

3. The optimal control problem

Let U be a Banach space (the control space), Uy a weakly compact
subset of U (the set of admissible controls) and H a Banach space (the
space of observations). One suppose the state of the system given by

y = Gu + z,

where 7z is a fixed element in H and G:U—~H is a continuous linear
operator.

3.1, PROPOSITION.. For every € >0 the set of all x= U for which
there exists wye U, such that

—|y(wg) — 2| + el — sl =sup { — lly(w) — 2| + el — 1w e Uad}»
contains a Gg set demse in U.

Proof. The operator G: U— H, being linear and continuous, will be
contintous also with respect to weak topologies o(U, U’), o(H, H') on
U and H, respectively. Since the norm on a normed space is a weakly lo-
wer semicontinuous functional, J(u) = — |[|y(u)—z|| will be weakly upper .
semicontinuous, and Theorem 2.1 can be applied to obtain the desired
result.

Tet now Q be an open bounded subset of R with smooth boundary.
Consider the differential operator

d d J
(3'1) Ly =8 Z.\/,'ja—'_ (aij —y‘) = Ei o (ﬂ;y) + ay,
0% 0% Jx;
where a;, ;< C1Q), ae L (Q),
(3.2) >8>0 a+ 5% >8>0, ac inQ

ED
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and

(3.3) X;am;= 0 on T,

:)x;heﬁ'e n= (1, ..., n, is the unit outward normal on the boundary
benote, also

(3.4) a%L: 2 aij%j;%'

et ye WW(Q), for fe LYQ), ue LYT'), be a weak solution of the
Neumann problem :

Ly ==f1in Q
(3.5)
Y —wonT
{ong,
ie.
3.6 a(yym =l fis, 952209 et (4 “ly
(3.6) 0 9 : = [Bas 2 504 B () + ayoldx

= Saﬂ) dx -+ SF #v do,

for all v e CHQ).

Suppose taht the following inequality holds
(3.7) Sija568 = ofE]? ae x e Q,
for all £ =« R".

1 Consider the following optimal control problem : find #, e U, such
that

(3.8) sup {— ||y(#) — zll, ¢ + elle —?llom: v e Udd =
= — ||y(uo) — Il + ellue — ||,

where U, is a weakly compact subset of LYI'), 1< g<n/(n —1) is
fixed, y(#) is a weak solution of problem (3.5) and v < LY(T).

~ By a result of BrEzIS and sTrAUss [6] the problem (3.5) has a
unique weak solution y(#) for all we LYI') and y(u) e Wh1(Q), for
1 <q<njn—1). '

Furthemore, the following inequality
(3.9) lylhe < Colllflla + [l#llnm)
holds (see Lemma 23 in [6]).
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If (w,) is a sequence in IL}T") converging to u e LY(IY), then
y(u) — y(u,) is the unique weak solution of Neumann problem :

Ly=0in Q

oy
1 a’VLN

= u — u, onl.

By (3.9)
e < Collw — wyllzyry —0, for k—oo,

|ly(u) — y(u)]
which shows that the application #— y(#) from LY(I") to Wi (€) is con-

tinuous.

The application #— y(#) being affine, like in the proof of Propo-
sition 3.1, follows the weak lower semicontinuity of the functional
J(#) = ||y(u) — 2]|. By a direct application of Theorem 3.1, the set of
all v e LYI') for which the problem (3.8) has a solution contains a Gy

set dense in LY(T').
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