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0. Intreduction

Boolean methods of multivariate interpolation were introdu-

ced in the fundamental papers of corpon [4, 5]. It was shown
in these papers that any collection of commutative projectors (in parti-
cular interpolation projectors) generates a distributive lattice each of whose
elements provides a method for approximating a multivariate function.
In particular, every (finite) lattice has a unique maximal element (i.e.
projector) which is characterized by having the largest range. The present
paper is concerned with the analysis of a ,,Jocally”” maximal projector
corresponding to a finite family of projectors of a certain bivariate approxi-
mation lattice whose generatorrs are parametric extensions of univariate
interpolation projectors. The interpolation method under consideration
is called generalized Biermann inierpolation since the classical Biermann
formula for interpolating a function on a triangular mesh turns out to
be a special case (sTancu([8]). Using certain properties of the generating
projectors of generalized Biermann interpolation we are able to derive an
explicit expression for the cardinal functions. After showing that the biva-
riate Taylor formula and the Biermann formula have the same Boolean
structure we apply generalized Biermann interpolation to reduced Hermite
interpolation introduced by MELEEs [6] in the finite element method.
In particular we derive an explicit expression for the cardinal functions
of reduced Hermite interpolation. Finally we prove a remainder formula
for generalized Biermann interpolation which is applied to reduced
Hermite interpolation.
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1. The Biermann projector

Let S = [a, b] X [a, b] be a square and let B(S) denote a sﬁbspace
of the space C(S) of continuous functions on S. Furthermore, let

(4 1<i <N}

be a set of N partial linear operators which operate on f = B(S) as a
function of x such that

4i(f) = aily) = B(S).
Similarly, let
{4i:1 <4 < N}

be a set of N partial linear operators which operate on f < B(S) as a
function of y such that

Ai(f) = ai(x) < B(S).

Now consider the finite sequence of natural numbers

l <#u <my < ... <ug_ 1< #ug=N
and let

Av={Lji,:1<j<m}, 1<k<K
be a set of univariate cardinal functions, with respect to

={4i:1<isn}, 1<sk<K

ie.
(1) AilLjn) = 8, 1 <4, j<m 1<k<K

Furthermore, we suppose that

(2) (A = {Mig1d, 1<k <K—1
Similarly let

Ni={Lj, :1<j<m}, 1<k<K

be a set of univariate cardinal functions with respect to
Ay ={A47:1<i<wn}, 1<k=<K,

ie.

(3) AULY,) =84, 1 <i,j<m, 1<k<K,
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and suppose that
(4) (A CAA+1), 1 <k <K -1
Thus we can construct the set

{Py, 11 <k < K}

of parametric projectors P'I‘p’ 1 < £ < K, associated with the sets Aj
and A;, 1 <k <K:

(5) ZA )Lin(x), 1<k <K.

Similarly we construct the set
{Pn, 1< k< K}

of parametric projectors P;;k, 1 < B < K, associated with the sets Aj
and A7, 1 <k < K:

"Iz
(6) A{(f) Lia (¥ ), 1 <k < K.

1=1
It follows from the relations (1), ..., (4) that the projectors P, and
P;;k, 1 < k < K, are absorptive, i.e.

P, P, =P,P, =P, 1<1c< j < K,
) PPy, = PP, = P, 1<i<j<K.
Finally we assume that the sets A%, A% commute on B(S):
(8) AAJ(f) = AJAif), 1 <4, <me [ e B(S)
Thus it follows from (2), (4), (7), (7) that the projectors Py, .. v Rt
P, .. PC’, commute and generate a distributive lattice (cf. CORDON

47). Spec1al elements of this lattices are product projectors P, P
1<4,7<K:

i

"y
P, Pi(f 2 AJAL(F) Ly (%) Lina,(9)-

Obviously, the product pro]ectors enjoy the following interpolation
properties :

AL AP PL() = AiAL()

) l<sl<n 1 sm<smn, 1 <14, j 2K).
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DEFINITION 1. The generalized Biermann projector P, is defined as
the Boolean sum of the projectors P, Py | 1 <7 <K:

’ P/I

?Lk 1&1{

PK:P @P;t,PZK_I@--~®P¢ILK 1P;:2®PnKP;:1-

(Note that the Boolean sum of two commuting projectors 4 and B is
defined by 4 @ B=4 + B — 4B).

The generalized Biermann projector Py is locally maximal, since it
s the maximal element of the sublaitice generated by P, Pigi_p 1s7<K.
It enjoys the interpolation properties given in

THEOREM 1. For f = B(S), the function g = Py(f) interpolates f in
the sense that

AlAl(g) = ALAL(f), (1S5 <m. 1)< ngr |SrsK).
Proof. The lattice theoretical construction of Py yields

P, P

B4 1—~7

Py = P, P; 1<7<K.

Kp1—r - =TS

Thus the interpolation properties of the Boolean sum projector Pj follow
immediately from the corresponding properties of the product projectors
(see (9)).

Our next objective is to derive an explicit expression of the projector
Py in terms of sums of product projectors P, Py 1 <7 < K.

LEMMA 1. For the gemevalized Biermann proyector Py the following
representation formula is valid :

K—1

K—1
(10) B 2 B IRgr, 231 T
Proof. We will prove this representation formula for K = 3. The
general case can be proved by induction (cf. pDELVOsS—PosDORF [3]).
Py=P, P, ® P, P, ® P, P, =
= (P}, Py, + Py, Pn,— P, Py) © P, Py =
=P P, + P, P, —P, P, AP, Py + P, P, —P, P, +P, P, =
= P, P, + P, Ps + P/ P, — P, P, — P, P,

THEOREM 2. Let f = B(S), then the generalized Biermann interpolatnt
Py(f) of f has the following representation (ny = 0):

Pyt "g—s

(1) Pr(f)(x ») zz;j E > X5 A; A7 (f)Lij (%, p),

r=0 i=nm,+1 j=ng_1_s+1
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wheve L;j(x, v) denote the cavdinal functions with vrespect of _A;- Aj
(, +1<4 <My, #g1s+ 157 <ng_, 0 <7 <s <K—1) given by

(12) Lij(x, ) EL‘”I-H %) Ling_, (y) — Z;HL:,n( )LJ””K l(y)

Proof. Taking into account (5) and (6) the representation formula
(10) yields

Pr(f)(x,5) = > 2 AL AT (AL, (DL, (¥) —

-
I
=1
-
[
-
.,
Il
-

= Y AL A (DL, (9L, ().

1 PK s
EL"‘[_*_I 7:”}( l(y) e

i=n,+1 s=r j=ﬂK_1_s+1

1 K —s

(ZLus‘ L,:”K ;(y)):
KE—1 "r41 K—1 PR —s (

E L; ”H—l LJ",nK_;(y)) -

S . E ( 2 I‘“’z ) Ll z(y)) i

~N
Il
S
U
‘3
4
“
!I
_|_
\
E
V)
+

[EI’WH %) Ling _ y) —

=3 E 2 {21411“1 L;,”K 1(3’) n s

s=0 r=0 i=n’+l f=”K—l—s+1

S

= 3 L)

l=r41
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Thus the equalities (11) and (12) are verified. We now merely have to
prove that the L;;(x, y) given in (12) are the desired cardinal functions.
Theorem 1 yields for f < B(S)

Ai A7(f) = A1 A] (P (f))

: (lsisn,,1§j’5%K+1_,,1sysI{).

Let
f(x’ _y) 6 Ll/e,nK (x) Z:»K(y), 1< k, !l < Mg
Then /
AL A% () = Sipndi, (L <k <m, 1 <1 <ngy, 1 <r < K).
Thus

Py (f) = Ly,
which implies

AT A7 (Lig) = A7 AT (Py (f)) = A} A7 (]) = 8i0 8.
This proves our theorem.
We consider now in greater detail the two cases #, = 7 and n, = 27.

L:#, =7 In this case we have N = K. An application of Theorem 2
yields :

Palf)3) = 5 3 b ey (D Lyrseesf, ),

with

Lopin—s (%, 5) = ZL;+1, v (%) Lh s n—i (y) — 2 Livi(%) Ly w—i (v).

i=7r+1
Note that the well known bivariate Taylor formula and the Biermann

formula (stancyu [8]) are obtained by specializing the operators and
cardinal functions as follows

(i) Taylor formula :
Ai(f) = D1 f(x4,9), AL (f) = D=t f(x, 4), 1 <4 < N,

Lis () =(r—x= i — 1)1
LaO)=(y=yptji— 11 (75 h 1 ks H).

(ii) Biermann formula :
Ailf) = f(x;, 3), AL (f) =f(x 9), 1<i<N.

i (%) = lj[l (% — ;) [ (%, — %)
i (1<i<k 1< ks N).
i (y) = ]11 (v~ i)/ (y; —35)
J#7

with <X <o <y, <Y< ... < Yy
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II: ., — 27. In this case we have N = 2K. An application of Theo-
rem 2 yields:

K—1 s 27 +2 2K —2s A )L ( )
= A; 7 47 X, y 3
(13> PK(f) (x,y) o 52’6 y=0 i=2r+1 §=2(K—s)—1 ! (f !
with 5
(14)  Liyi(x, y) = 1; Liogsy (%) Ligm—n(y) — l;’;l Lio (%) Lo —n (9).

From (13) the following formula can easily be derived:
K—1 s
(15)  Pr(f){x,9) = ;; Z_/:{Aé(rﬂ)/lg(xﬂ) (N Lav+, 25 (%, ¥) +
+ Ay -1 (f) Lawrn, ug—g-1 (%, ¥) +
+ A Asg—s (/) Loy, 2k -5 (%, ¥) +
+ Asprs Adx—9-1 () Larir,2x—9-1 (%, ¥)}-

We will now apply this formula to reduced Hermite inteiptolagio_n
schemes of type IT proposed by mMELKES [6]. For this purpose let (S =
= [0, 1] x [0, 1]):

Ay s (f) = DO, v), An(f) = D7 f(L, )

. < i< K).
/211;—1 (f) T Dyf(x: O), AlZ’t (f) :D;_l.f(x’ 1)
The corresponding cardinal functions are
A1 ) (k—f(k—— 1 —s) x)
(16)  Lisa (@ =51 =41 l<j<k 1 <k<K)
(17) L (%) = (—1)7" L1 (1 — 2). :

i 2 ined analogously.
Ly and Lj;x (y) are define _
'(rP}‘loer f&icgggiifatzjor;ﬁokfb&e cardirjlal functions see PHILLIPS [7]).

From (14), ..., (17) we now obtain the following

rHEOREM 3. The representation formula for the veduced Hermite wnter-
polant Py(f) of f s given by :
K—-1

(D DE=1=f(1, 1) (= 1)K Ly g1, g 1 (1—=2,1=9) +

Nk

Py(f)(xy)=

s
0 vr=0

+ D;Df—l—sf(l: 0)(—1) Loysrax—9-1(1 — %, y) +
+ D;Df—l—sf(OJ D(—1DE-1Loyy1ax—g-1(%, 1—3) +
ir D;Df—l—Sf(O, 0) Loys1,2x—9—1(%, )},
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with

s
Lo, . . /
Zr 91 (%, Y) = Z.;LZH-IQ(HI)(%) Lat-s)—1,20c-p(y) —
&
- !
l;}—l Lavm(®) Lo —1 ().

2. Remainder representation:

In this section we will derive a remainder representation formula for

generalized Biermann projector P is for i
e oot proj r and apply this formulato reduced Her-

From Lemma 1 we obtain the following representation formula of Py :

K

18 — B ’ "
(18) Px=23(P,,, — P,)P

= "K—r
with P, = P, = O‘ and P, =T where 0 denotes the zero-projector
and I denotes the identity-projector.
This leads us to

. LEMMA 2. For the remainder projector of P, denoted P
wing rvepresemtation formula is va];id]: P \lidegioiod \0n Bk the follo-

K K—-1
By toon, B Brsl= LA > Dt 2
K P P
r;6 et npg_, pad Ryg 1t R _pt

by Proof. Taking into account the formula (18) th: lemma is proved

K

K K—1
P! . ’ " > 7 7 ’
> (P, — Py Pl 2P, Pr, — ZO Pyl ippkl) «
= b=

r=0

R

K
(Prpsn = Pr) P+ 25 (Po, = Po, ) Pl =

il
o

14

K X

i 2 (P”r—l-l n P”‘y) P;:K—f'_ ';O(P’,’y+1 il P;,)_E:K-, =
K

:g(P”’_'_l T P,’;’) = I.
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An application of Lemma 2 to reduced Hermite interpolation yields
THEOREM 4. Let | < B(S)=C2¢+2(S), S = [0, 11 x [0, 1]. Then the
remainder Py(f) of the reduced Hevmite interpolant Py(f) is given by :

- K(y — DK
PP, 9) =" Gy~ D35, yx) +

#K(x — DK

e — )5y - kT, _,
Di Df’(K )f(x,, yK")+ (2R)! Din(xK'y) -

K—1 ¥
+ ,Z:;l (21 12(K — 7)) !

K—1 x'+1(x s 1)r+1yK—r(y _ 1)1{_,
@@ + 1) 12K — M)

s DQx('-H) Di(’“')f(fm,yx_,).
=

Proof. Using the error estimates of univariate Hermite interpolation
(cf. DAVIS [2]) the theorem is proved by

K—

1 K—1
P,= Pox+ 2 Py, Phyg-n+ Pix— Z Py Pax—),
r=1 7=0

which is an immediate consequence of Lemma 2.

3. Coneluding remarks

In a recent paper WATKINS and LaNcasTER [9] extended the method
of reduced Hermite interpolation to fill up certain gaps in the finite
element construction of rectangular elements. It is the topic of a forthco-
ming paper to show that the elements of this extended Melkes family can
be constructed using generalized Biermann interpolation. In particular
this will include the explicit construction of the corresponding cardinal

functions.

APPENDIX

As an instance we present the interpolation stencils of reduced Hermite
interpolation for K =2, 3, 4. A dot surrounded by k& circles denotes a
multiple node consisting of the function value and all derivatives of order
up to and including k. We also give plots of the cardinal function of the

functional 4147 (f) = f(0, 0).



F. J. DELVOS and H, POSNORF 10 11 A BOOLEAN METHOD IN BIVARIATE INTERPOLATION 45
. ) REFERENCES
a e [1] Biermann, O. Uber niherungsweise Kubaturen. Monatsh. math. Phys. 14, 211-—-225
(1908).
®___.___. ___@) [2] Davis, Ph. J., Interpolation and Approximation. Blaisdell Publishing Company, Lon-
don (1963).

[3] Delvos, P.]J.,, Posdoztf, H., N-th order blending. In: , Constructive Theory of Func-
tions of Several Variables”. Eds.: W. Schempp, K. Zeller. Lecture Notes in
Mathematics, 571, 53—64 (1977).

[4] Gordon, W.J., Distributive Lattices and the Approximation of Multivariate Functions.
Proc. Symp. Approximation with Special Emphasis on Spline Functions,
(Madison, Wisc. 1969). Ed.: I.J. Schoenberg. Academic Press, New-York, 1969,
pp. 223—277. .

[5] Gordomn, W. J., Blending-Function Methods of Bivaviate and Multivariate Interpolation
and Approximation. SIAM, J. Num. Anal, Vol. 8, No. 1, 158—177 (1971).

[6] Melkes, F., Reduced Piecewise Bivaviate Heymite Intevpolation. Num. Math. 19, 326—
—340 (1972).

[7]1 Phillips, G. M., Explicit Forms for Certain Hevmite Approximations. BIT 13, 177 —180
(1973).

[8] Stancu, D. D., The remainder of cevtain linear approximation formulas in two variables.
SIAM, J. Num. Anal., Ser. B 1, 137—163 (1964).

[9) Watkins, D. S, Lanc aster, P., Some Families of Finite Elements. J. Inst.

| Maths Applics 19, 385—397 (1977).

Received 16, IL. 1979.

=~
J7
C

® @ Dr. F. J. DELVOS Dr. H. POSDORF
Lehvstuhl fir Mathematik I Rechenzentrum
University of Siegen University of Bochum
Holderlinstr, 3 Universitatsstr, 150
D—5900 Siegen 21 D-—4630 Bochum
West Germany West Germany

e

©




