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CONES IN A CONVEXITY SPACE;
ORDERED CONVEXITY SPACES

by

GABRILLA CRISTLESCU
(Cluj-Napoca)

1. In this paper we define the notion of cone in a convexity space
(in the sensc of v. w. prvant and r. J. wEBsTER [2], [3], [4], [5])
and we study the properties of some types of cones. Also, we define the
concept of ordered convexity space and, using the cones theory in a conve-
xity space, we give an example of ordered convexity space in the sense
of the definition we’ll give. This order relation is similar to the order rela-
tion induced by a convex cone in a Banach space.

2. Preliminaries

We denote, as in [2], by 4, B, ... sets, by a, b, ... both the
elements of a set and the singleton sets. Thus we use, as in [2], the sign
C instead of = except when a set is a member of a family of sets. The-
notation 4 & B means A (| B # @ and (a, b, ¢, ...) stands for the set
formed by the elements a, b, ¢, :

ILet X be a nonempty set. We endow X with an operation - : X X X —
— 2% called the product or jein of a and 0 when a, b (C X, and the
inverse operation [: X X X — 2%, defined by a/b = (x C X :a C bx), for
all a, b C X. The couple (X,.) is called a convexity space if it satisfies
the following axioms:

(1) ab #= G, alb # O,

(i) a(be) = (ab)c;

(iil) afb = cld = ad x bc;

(iv) aa=a=ala;

(v) abz ac=0b=c or bx ac or ¢ X ab,
for any a, 0, ¢, d C X. Herc ab denotes « - .
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For a,'b C X, ab means the open line segment having its ends in
a and in b, and a/b the half-line having the origin in @ and not containing .

The product and its inverse are extended to subsets of X by defining

AB = ab, AlB=Ualb
s o

A set 4 (C X is said to be convex if 44 (T A and linear if A [ A A.
If 4 C X we denote by [A4] the convex hull of 4, i.e. the intersection of
all convex sets which contain 4 and by {4} the linear hull of 4, i.e.
the intersection of all linear sets which contain 4. For example, [a, Z;] =
=abJaUb, {a,by=albJalUabJb\Ub/a. [a, b]is the closed line
segment joining a and b and {a, b} is the line which contains a and b.

The concepts of independent set, basis, dimeusion for a convexity
space are defined in the natural way, as in liniar spaces (see [4]). _
_ A convexity space (X, .) is said to be complete if whenever 4 ( X
s convex, a (C A and b £ A4, there exists ¢ (T [e, b] such that ac C 4
and be CX\A. Aset H C X, H #@, H # X, is a hyperplane in (X, .)
it H is linear and {H|)x} = X for any ¥ C X \H. The unordered pjai;
(C, {)).“ CCX, DCX, C#@, D #@ is said to be a convex pair
in X if €, D are convex sets, C(\ D = and C (JD = X. The reader
may find in [3] many properties concerning the relation between hyper-
plancs and convex pairs. L

A topological convexity space (X,., =) is a convexity space (X,.)

with a topology t satisfying : :

(it) @« C ab for all a, b C X ;

(iit) if abx U = 1 then there exist V, W s« with a C V, b W
and such that a'd’ & U whenever o' C V, 0’ C W ; s

(iiit) if a/b = U = 1 then there exist ¥V, W e« with a C V, b W
and such that a' /b’ U whenever a' CV, b  W.

3. Cones in a convexity space

Let (X,.) be a convexity space.
Definition 1. Let 0 be a point of X and S C X. We call cone genc-
raled by S and having the vertex in 0 the set

CS=(xCX:3yCS, xCyUyUy/0oL)6)

In some places it is not necessary to put in evidence the set S which
generates the cone. Thus we’ll call cone a set K which was obtained as
in definition 1, i.e. K is a cone if there exist a point 6 (- X and a set
SCX such that K = @,S. It is obvious that a cone K can be obtained
using an infinity of sets S.

TScRY, 0 = 0, @S is convex, closed and doesn’t contain linear
sets ez:cept the singleton sets then @,S is a cone in sense of [9]. If
SCHR, 0=0, and @,S is convex then @,S is a wedge in sense of [7].
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Definition 2.4 cone KCX s said to be a generaling cone
if for every x C X there exist w, v C K such that {0, x} s {u, v}, where
6 15 the vertex of the cone K.

In linear spaces this definition is equivalent to the definition of a

generating cone given using the group structure of  the space: if X
is a Banach space then the convex cone K (T X (in sense of [9]) is a

generating comne if for every x (T X there exist #, v (C K such that x =
— % — . In order to proove this equivalence we suppose first that for
every x (C X there exist #, v (C K such that x = » — v. Then, using the
propertics of vector operations in X we get that the line which contains
the points # and v is parallel to the line which contains the origin of the
space and the point x. Conversly, if x (C X and there exist », v C K such
that {0, x} % {u, v} than let z (C K such that z/x C K. Let ¢ C 2/ and
vy K such that {#, ¥} & {0, x} (this v exists because of the convexity
of K). But on the line {¢, y} there exist a point s such that {0, s} & {x, z}.
The points s and ¢ satisty the property that x =/ — s.

Definition 3. The cone K C X s a convex cone if KK = K.

The theorems which follow are transpositions fo some classical results
from the vectorial space case. Here is now a theorem of the Carathéo-
dery type:

rumorem 1. If (X,.) 4s a comvexity space, dum X =n, 0 CX
and S (X such that €4S 1s a convex cone and dim @S = d, then for cvery
X (€S there exist independent points y; C S, i=1,2, ..., p, p =4
suck that x C K, where K is the interseetion of all convex cones having the
vertex in © and including the points y;, ¢ =1, 2, ..., p.

Proof. x (C €4S 'means that there exist y (Z S such that x C Oy U
Uy Uy /6 Applying for y the theorem 20 from [4] we get that there
exist independent points, vy, ¥s, ..., ¥, C S, p £d, such that y C
C [0 vy, .. ) Hiwe put K = @4ly,, , ¥p] then we get the cone
required by theorem 1.

rHEOREM 2. If (X, .) is a comvexily space, v a Hausdorff lopology
on N and K X a cone containing interior points (a full cone) then K s
a generating cone.

Proof. Let x C X and # C K. This means that there exist a neighbor-~

hood V of the point #, V. K, V # K. Let » C X such that {z, u} =
# {0, x}. Then there exist v (C {z, 4} | V. # and v are the points we
looked for.

4. Ordered convexity spaces

Delfinition 4. An ordered convexity space (X,., £) is a con-
vexily space (X, .) with an order relation, <, satisfying:

(i0) if a £ b then for every x Cab, a £ x £h;

(iio) 'if @ < b then for every x (T alb and y Cbla, xS a £b =y

(iiio) if @ and b are not comparable then any x, y C {a, b} are also #o
comparable.

!
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It's easy to verily that (R*:, <), where - is defined by a - b=
=(xCR:I0O<r<], ¥=2a+ (1 — AMb) and £ is the order rela-
tion induced by the cone of the nonnegative elements from R”, is an orde-
red convexity space.

We remark that the axioms (io) and (iio) show that a linear set
{a, b}, where a < b, in an ordered convexity space is isomorphic to a line
containing two points which are comparable by the order relation induced
by the cone of nonnegative elements from R” or to a part of such a line.

raEoREM 3. If (X,.) is a convexity space and K C X is a convex
cone which doesn’t comtain limear sets (except the singleton sets) them the
binary relation <y defined on X by :

1° & 2, % for any x C X;
2° x, y C X, x=gy if there exist z C y|x such that zfy C K,
is a pariial order on X, and (X,., <o) is an ordered comvexity space.

Proof. 1° implies that =g is reflexive.

Antisymmetry. Let v,y CK with x<,y, ySex and x5y Than
y|xCK and x/yCK. From the convexity of K it follows that xyC K,
than we have {x, v} =xUyUxy U« [y Uy[¥CK whichis a contra-
diction with the hypotesis that K doesn’t contain lines.

I x 'y C X \K with & gy, vy Sgx and x # y than there exist
2, C v/ and z, C xfy such that z/y C K and zp/x (C K. But

21fy = /% C y/x C {%, ¥} 2ol% = zsfy C &y C A%, ¥t

Let u ( zy and v C #zy/x. Than uv (C K because of the convexity
of K. Since z, C v¥, 2z, C wy, y C zx and x (C 2,y we have y C uxy and
x (C vxy then xy  wvxy. This can take place only it xy C wr. But xy C
C X \K and wv C K, which is a contradiction with the convexity of K.
The case x C X, y C K is similar.

Transitivity. Tet x, y, 2 C K, % 2x), ¥ S Than we have yfx C K&,
zly C K. Than (y/x)(z}y) C K. If ¥ C {z, «} than x =gz If ¥ G {7, «} let
u(z[y and vCy/x. Hence zCuy and y Cvx and we have zy | woxy=uuvx.
This means that z ( #vx and than there exist w C z/x () wv. But wo C
C (y/x)(z]y) C K, than w C K. Because and p was arbitrarily choosed
on z/y respectively on y/x, by a convenient choice of these points we find
that every w ( #/x, w ( K, and than z/x C K, hence ¥ =% T xihty 2h s
C X \K, % Sgv, v Sgz than there exist a C y/x and b (C #[y such that
aly C K and bjz C K. A similar argument for a and b proves that z/x C
C (yjx)(z/y) and hence there exist ¢ C #/¥ such that ¢/z C K, than we
have also x Zgz.

We use analogous arguments for the cases x, y C X\ K, 2 C K and
x C X\K, y, 2z C K. The axioms (o), (iio), (iiio) are now obvious.

Remark. If X is a Banach space and K a convex cone in X the order
relation defined in theorem 3 is equivalent to: if », y (C K or x C X\ K,
y CK, xspyify—xCK andif v, y CX\K, ¥ Sgy ity —xC K°.
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(9]

rEvma 1 If (X,-, 7) ds a complee topological convexity space lo-
cally comvex and Hausdorff, K C X a convex full cone which doesn’t con-
tain linear sets (except the singleton sets) and %, Y C X with x Sgy than
there exist two. neighborhoods U e @(x) and V < @(y) such that if a C U
and b C V than either a =xb or a and b are nol comparable by Zg.

Proof. Let us suppose that x, ¥ C K. Then let &' C K a convex full

cone such that y C K', x ¢ K' (see [2]) and x =g 9. Since v is Haus-
dorff and X is locally convex there exist a convex and open neighborhood
U = @(x) such that U N K' = . Than, the theorem of Eidelheit type
(sce [1]) shows us that there exist a hyperplane H which separates the

-~ 5
sets U and K'. Tet Ve Q)N 5 aC U and b CV. Let H=CND
where C and D are the closed half-spaces associated with H (see [3]) and
fet us suppose that K’ C. Than bfa C C and we have either bja C K C
C K, bla C K or there exist a 2 C bla such that zfa (C C \ K. Hence we
have ecither @ <xb or a and b are not comparable by S

It v X\K, vy C K we take K' = K and we use the same reasoning.

If x C X\K, vy C X\ K we take instead of K’ the set K" = [y U K]
and we use the same separating theorem and the samne argument. The
lemma is now completly prooved.

rreoreM 4. If (X, -, 1) is a complele topological convexity space,
locally convex, Hausdorff, K C X a cowvex cone which doesw’t contain
inear scts (cxcept the singleton sets), (x,) v CX, W)= CX with X, Sk
gV =1 2, ... andtf x, - x and v, — v (n — o) than either x Sy y
or x and y arc not comparable by Zg.

Proof. Let us suppose that the assertion ¥ <,y is false. Than either
ySg ¥ or ¥ and y are not comparable by the order relation induced by
K. Since the topology = is Hausdorff and X locally convex than there
exist Ue @)(x), Ve @(y) convex and open such that UN V=@ Than,
from [1] it follows that the sets U/ and V can be separated by a hyper-
plane H. Let a C xy () H. By the hypothesis it follows that there exist
the convex and open-neighborhoods U’ = @(x), Ve @y, 4= 0@
such that Lemma 1 and (iit) take place. This means that for any u C U’
and v C V' we have either v =gu or v and % are not comparable by Sg.
But since %, — & and y, — ¥ when » — 00 it follows that there exist a
ne C N such that x, C U’ and ¥, C V' for n = n, Hence for n = n, we
have either v, <%, or y, and x, are not comparable by £, which is o
contradiction with the hypothesis x, gy for every n C N.
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NECESSARY OPTIMALITY CRITERIA IN NONLINEAR
PROGRAMMING IN COMPLEX SPACE WITH
DIFFERENTIABILITY

by

DORETL I. DUCA
(Cluj-Napoca)

In this paper we consider the problem
(P)  Minimize Re f(z,7) subject to z = X, gz, z) < S,

where X 1s a nonempty open set in C*, S is a polyhedral cone i C*, f: X x
XA - Candg: X Xx X - @

The paper is devided into four sections. In Section 1 notation is
introduced and some preliminary results are given. In Section 2 we esta-
blish a necessary condition of the Fritz John type for Problem (P). In
Section 3 seven kinds of complex constraint qualification (CCQ) are given
and relations between them are established. In Section 4 we prove a
Kuhn-Tucker type necessary condition for Problem (P).

1. Notation and Preliminary Results

Let * (R*) denote the »-dimensional complex (real) vector space with

Hermitian (Euclidean) norm |[«]], R} = {x/x = (¥;) € B*, %; 20, j =

=1, ..., n} the non-negative orthant of R*, and C€"*» the set of m X »
complex matrices.

If A is a matrix or vector, then AT, A, A¥ denote its transpose, com-
plex conjugate and conjugate transpose respectively. For z = (7;), w = ()
e ("; (z, w) = w¥z denotes the inner product of z and w and Re z =
= (Re z;) = " denotes the real part of z.



