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1. Introduetion

In this note we consider the following max-min, fractional problem :
pMi. [find

9 = max min PASD I
x y gx.y)

subject to :
(1.1) hx, v)<0,4=1,2, ..., m,
where [: R*XRP-1R, g Rex R R and by REXRESR =12, ..., m).

Iu the case when the functions f, g and » not depend effectivelly on y;
the problem PM1 is an usual fractional programining problem (sec {17,
(4], [5], [8]). If one suppose that the functions f, ¢ and & are linear in
respect to x and y, then the problem pii is the linear fractional max-min
problem considered in [2] and 9]/ :

In the paper [4], B. MOND and B.D. CRAVEN give a method for
solying the fractional programming problem using two nonfractional auxi-
liary problems. From this result it can be find similar results in the parti-
cular cases of the linear fractional programming [1], quadratic fractional
programming [7] or polynomial fractional programming [6]. :

In this paper, we show that the result of monp and crRAVEN [4] can
be extended for the most general case of the max-min problem PpMl.
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2. The nonlinear fractional max—min problem

Next we follow the same way that in [4]). For this purpose, we consider
the functions £,: R - R (4 =0, 1, -+., m) verifying the following two
hypothesis :

i) E; (1=0, 1, ..., m) are positive functions, that is :

E; (2)>0, Vt>0;

i2) E, is a strictly increasing Sunction.

We denote :
Flu, v, ) =f[7, ¥) - By,
2.1) ammnzqgfyaw

Hu, v, {) — h,.(;, %J Eyt), i=1,2 ..., m

We also suppose that there exist the limits :
im F(u, v, ¢) = F(u, v, 0),
—(

t )
lim G(u, v, #) = G(u, v, 0),

=0

lim Hy(u, v, ) = H,(u, v, 1), 1 =1, 2,

=0

cee, M.

Using the above notations, we associate to the problem pu1, the
following non-fractional max—min problem :

rM2. Find
max min F(u, v, £)
u (v, 1)
subject o : ‘
(2.2) Gu, v, ) =d,
(2.3) Hiu, v, <0, (6 =1,:2, ..., m), t = 0,

where d + 0 is a given veal nuniber.
We denote by : ‘
(2.4 i (x. ) = L2D.
£x,y)
the objective function of the max—min problemi pmi.

’
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g ” ” = " jJ 3
Following the paper [2], the pair (x", y") € S o {(x, ¥) S R x Ik
h(x, y) <0 ‘i =1, 2, ..., m}, is called! an optimal solution: for the
p.rol:’)le.m pM1 if the following.two conditions are verified :

al) min {g(x", ¥):y € S(X")} = g(x"; ¥);
¥ .
a2) g(x”, ¥") > min {g(x,, ¥):y = S(x)}, Vx = P,

where : )
P — {x € R*: 3y = R? such that /;(x, y) <0,71=1,2, ..., m},

and I : |
Sx) ={veRe:hx, v <0,i=1 2 ..., m}.

Similarly are defined the optimal solution for the maximin problem pm2.

The main result of the work is:

THEOREM 1. If: |

(i) the point (u, v, 0) is not a feasible solution for t.he pro,blen,z Pm;

(i) 0 < sign d = sign g(x’, ¥') for an letimal solution (x'y y') of the
problem PMI ; . | .

(i) (u”, v", t") is an optimal solution of the problem PM2;

.

. s . . . l II.
then the pawr (‘:ﬁ, :—) is an optimal solution of the problem py

Proof. From (i) it follows that #/'> 0, and then by il), we obtain :
E; () >0,¢=0,1, ..., m.

14 v’

But then, by (2.3) and (2.1) it results: (‘;—,, 7) e S. Let suppose
that the pair (w'”/¢”, v/'/t”') is not an optimal solution for the problem PMI.
Then, by (2.4), it follows:

@25)  min {gx, )1y S SO = g(xyy) S gl V) =
= min {g(u”’/t", ¥): ¥y € S |t")}.

On the other side, from the condition (ii), there exists @ >.0, such
that : .

g(x', y') = 0d.

Taking :

—

t = Eg1(1/6), v =¢x', v =1y,



286 STEFAN TIGAN

4

and using (2.1) — (2.3), it can be easilly show that (', v/, ¢') is a feasibl

solution for the problem pm2. Also, by (2.1) and (2.2), we get: AR
(2.6) S Y) _ F@ve) | Fev )
EX.Y) . G, V1) LAY
(2.7) SO ) Pt vy R, v, )
g(u”/t", V”/t”) G(ll”, V", t”) 7 % d M

But, by (2.4)—(2.7), it follows the inequality :
F(lll’ vl, tl) > F(ull, vll’ tl’)'

which is contrary to the assumption that (u”, v”, ¢) i i

. S 5 ) 1s an optimal solu-
tion for the problem pm2. Hence (u”ft"”, v"[t") is an optimal solution
of the problem pmi1, and the theorem is proven. '

- By' .Theorem 1, if the problem pM1 has an opti i i
‘ . ; ! , imal solution, this
solution can be obtained by solving the following tVV(I)) problems : B

pM3. Find

v, = max min F(u, v, #)

1 u (v, i
subject lo :

G(u, v, ) =1,
Hy(u, v ) 0,005 =1} 201y m), t > 0.
pM4. Find ;
vy = max min (—F(u, v, ¢))
; X . (y!)

subject fo :

—G(u, v, ) =1,
Hi(u, v, £) <0, (1 =1, 2, LoaombiE 2 0.

=

From Theorem 1, it can be easily show  that v = max (v1, V).

3. The linear fractional ease

Now we consider the linear fractional max—min problem :

PMF. Find
v = max min X T W+~
. x y Ix+gy+4s
subject to :
(3.1) Ax 4 By < b,
{3.2) v X .2' 0, )f 2 ‘0’
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where e € R, L e R”, d R, g =R, 'heR” 7R, s R and the,
matrix A and Biwith reals elements are given, and. x  R*, y = RP: ;.-
If we take: Lo
Eit)=¢t (=01, ..., m),
then, to the problem pM1, we can associate the following linear max—min
problem (see, the problem pu3):
pML. [ind

v, = max min (eu + dv + #)
u (v, )

subject to: :
3.3y Au+Bv — bt <0,

(3.4) fu 4+ gv 4 st =1,
(3.5) uz0 vx=0 >0

For the problem puMF we suppose:

H1) the set S={(x, y) €« R* x RP:Ax + By <b, x>0,y > 0}, is
nonvoid and bounded : :

H2) fx + gy + s> 0, V(x, y) € S.

From the theorem 1, one gets the following result:

THEOREM 2. If the condilions H1) and H2) hold, and if (a'’, v, t7)

12

1s an optimal solution for the problem ML, then the pair (u—, U—) is an op-
t/l tll

timal solution for the problem pMF.

Proof. Because the conditions (ii) and (iii) of Theorem 1 are verified,
it remains to show that (u”’, v”/, 0) is not a feasible solution of the pioblem
PMI, (the eondition (i) of Theorem 1). That is, it must proved that every
(u, v, t) verifying (3.3)—(3.5) has ¢ > 0. In the contrar case, there exists
a pair (u, v), such that:

Au + Bu <0,
u=0 vz=0

Then by (3.4), it follows that (u, v) is not the null vector. But if the
pair (x, y) verifies (3.1) and (3.2), then the pair (x + wu, y + wv) verifies
also the inequalities (3.1), (3.2), for every w > 0, which is contrary to the
boundness of the set S supposed by H1). This completly proofs the theorem.

In the end we make the remarque, that the linear max-min problem
PMI, can be solved by the method given by 3. E. raLx [3]. Also from
Theorem 1, it can be obtained similar results with Theorems 2, for the
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max-min fractional problems with nonlinear fractional objective functions
and linear constraints, such as homogenous or polinomial fractional objec-
tive functions,

REFERENCES

[11 A. Charnes, W. W. Cooper, Programming with lincar fractionals functionals. Nav.,
Res. Log. Quart., 9, pp. 181-—186 (1962).

[2] W. D. Cook, M. J. L. Kirtby, S. L.Mehndiratta, A linear Fractional Max-
min  Problem. Oper. Res., 23, 3, pp. 511—521 (1975).

i81 J. E. alk, 4 Linear Max-min Problem. Math. Prog., 5, pp. 169—188 (1973).

[4] B. Mond, B. D. Craven, Nonlincar Jractional . programming. Bull. Austral. Matl.
Soc., 12, pp. 391—397 (1975).

[51 S. Schaible, Nonlincar fractional programming, Oper. Res. Verfaliren, XIX, pp.
109—-115 (1974).

9] I. C. St a r m a, Feasible divection approach to fractional: programming problems. Opsearch,

4 pp. 61—-72 (1967).

{7} K. Swarup, Programming with quadratic fractional functionals. Opsearch, 2 pp. 23—30
(1965).

8] $. Tigdn, On a method for fmctwnal opttmzzal/on problems. Application to the stochastic
optimization problems. Proc. of the Computer Science Conference, Szekesfelervar
Hungary, 1973, pp. 351—355.

91 S. Tigan, Asupm problemei de mavinvin fmm‘umarc Seminarul de ecunatfii functionale,
aproximare gi convexitate, Cluj-Napoca, mai, 1980, pp 139—143.

Received 29. V. 1980

2 . Centrul teritorial de calcul electronic
! Str. Republicii nr. 105
3400 Cluj-Napoca, Romania



