MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 9, N° 2, 1980, pp. 293—299

and I(x) = F(x) I(x) by I(x) denote the difficusion of span I(x), x = F(x) which applies, if $\rho'(x)$ is subjective and there is a I(x) = F(x) with $\rho'(x) = I(x) = I(x)$ for every x = I(x) and f = I(x). F is appoint

Tankilihara yannaratara a (spol), kovory 'an d endati, it u raska 🛒

ON APPROXIMATION OF CONTINOUS FUNCTIONS

IN THE METRIC $\int_{0}^{1} |x(t)| dt$

WOLFGANG WARTH

endmillion to 14 (in Arabita of (Göttingen)) of opposite the interest of the desired tradition for the desired tradition for the desired tradition of the desired tradition

1. Introduction. In 1924 JACKSON [3] published a paper on the linear approximation of continuous functions in the mean. One central result is that the best approximation from the space of ordinary polynomials is unique. A generalization to the approximation from a Haar space has been published in 1958 by PTAK [5]. In this paper we present an extension of these theorem for the case of nonlinear approximation with constraints.

Let T and E be normed linear spaces and P a subset of E, F: $E \to T$ mapping and let F[P] be the set of approximating functions. If $w \in T$ then a best approximation to w is an element $v_0 \in F[P]$ with $\|w-v_0\| \le \|w-v\|$ for every $v \in F[P]$. Here we shall study the question if such a best approximation is unique. Let P be given as a set described by inequality and equality constraints: I is a finite set, $(\Gamma_j)_{j\in I}$ is a set of compact topological spaces, P_0 is an open subset of E, Z is a Banach space and let mappings $g_{\tau,j}: E \to \mathbf{R}(\tau \in \Gamma_j, j \in I)$ and $\phi: E \to Z$ be given. Let

$$P = \bigcap_{j \in I} \bigcap_{\tau \in \Gamma_j} \{ \alpha \in E \mid g_{\tau,j}(\alpha) \leq 0 \} \cap \{ \alpha \in E \mid p(\alpha) = 0 \} \cap P_0,$$

We assume that E is complete, F is Fréchet-differentiable at every $\alpha \in P$, the sets $(g_{\tau,j})_{\tau \in \Gamma_j}$ $(j \in I)$ have the property D1 at every $\alpha \in P$ (see warth [6]) and p has the property D2 at every $\alpha \in P$) (see warth [6])*.

the straining of a second of the straining straining second at the straining second se

^{*} D₁ and D₂ are differentiability assumptions.

:3

SE DE CHÉORES DE LANCORDADAMEION

For $\alpha \in P$ let $I(\alpha) = \{j \in I \mid \max_{\tau \in \Gamma_i} g_{\tau,j}(\alpha) = 0\}, ||\Gamma_j(\alpha)| = \{\tau \in \Gamma_j | g_{\tau,j}(\alpha) = 0\} \ (j \in I)$

 $E(\alpha) = \{h \in E | p'(\alpha)h = \theta, g'_{\tau,j}(\alpha)h \le 0 \text{ for every } \tau \in \Gamma_j(\alpha) \text{ and } j \in I(\alpha)\}$ and $T(\alpha) = F'(\alpha)[E(\alpha)]$. Let $d(\alpha)$ denote the dimension of span $T(\alpha)$. $\alpha \in P$ is called regular, if $p'(\alpha)$ is surjective and there is a $h \in E$ with $p'(\alpha)h = 0$ and $g'_{\tau,j}(\alpha)h < 0$ for every $\tau \in \Gamma_j(\alpha)$ and $j \in I(\alpha)$. P is regular if every $\alpha \in P$ is regular.

In warth [6] it has been proved (local kolmogoroff condition):

THEOREM 1. If $v_0 = F(\alpha_0)$ is a best approximation to $w \in T$ and $\alpha_0 \in P$ is regular, then TONITIMOD TO MOLTAMIXOSISIA MO-

(1.1) for every
$$h \in E(\alpha_0) \min \{l \circ F'(\alpha_0)h \mid l \in \sum_{w=v_0}\} \leq 0.$$

 $\sum_{\bullet - v_{\bullet}}$ is the set of continuous, linear functionals l on T with $l(w - v_{\bullet}) = 0$ $= ||v - v_0||.$

In this paper we suppose T to be the space C[0, 1] of continuous, real-valued functions defined on the intervall [0,1] with the integral norm. In this case (1.1) is equivalent to

(1.2) for every
$$q \in T(\alpha_0)$$
, $\int_{u_{w-v_0}^+} q(x)d\mu(x) - \int_{w-v_0} q(x)d\mu(x) \leqslant \int_{Z(w-v_0)} |q(x)|d\mu(x)$,

with $U_{w-v_0}^+ = \{x \in [0, 1] | w(x) - v_0(x) > 0\},$ $U_{w-v_0}^- = \{x \in [0, 1] | w(x) - v_0(x) < 0\}$

$$U_{w-v_0}^- = \{x \in [0, 1] | w(x) - v_0(x) < 0\}$$

and $Z(w-v_0) = \{x \in [0, 1] \mid w(x)-v_0(x)=0\}.$

 v_0 is a best approximation to w if

for every
$$v \in F[P]$$
, $\int_{v_{w-v_{\bullet}}^{+}} (v(x) - v_{0}(x)) d\mu(x) - \int_{w_{-v_{\bullet}}^{-}} (v(x) - v_{0}(x)) d\mu(x) \le 0$

$$(1.3)$$

 $\leq \int\limits_{Z(w-v_0)} |v(x) - v_0(x)| d\mu(x)$

holds (KOLMOGOROFF criterion).

F[P] is called an α -sun (see Brosowski, Wegmann [1]) if $w \in T$ and v_0 is a best approximation to w, then v_0 is a best approximation to $(v_0 + \lambda(f - v_0))$ for every $\lambda > 0$. 20 strangent and but (3) here $\lambda > 0$

If F[P] is an α -sun, $w \in T$ and v_0 is a best approximation to w_p them (1.3) holds. * D. and D. are differentiability companions

2. The Main Theorem. A L_1 -signature (U^+, U^-) is a pair of disjoint, open subsets of [0,1] with $U^+()U^-\neq\emptyset$. Let $U=(U^+,U^-)$ and

$$\mathbf{\varepsilon}_{U}(x) = \left\{ \begin{array}{ll} \text{of } \mathbf{if} & x \in U + \mathbf{i} & \text{of } \mathbf{if} \\ 0 & \text{if } x \in Z(U) \\ -1 & x \in U^{-} \end{array} \right.$$

with $Z(U) = [0, 1] \setminus (U^+ \cup U^-)$.

The L₁-signature is called extremal for $v_0 \in F[P]$, if for every $v \in F[P]$ $\int \varepsilon_U(x)(v(x) - v_0(x)) d\mu(x) \leq \int |(x) - v_0| d\mu(x).$

If $w \in C(X)$, $w \neq 0$, then the L₁-signature $U_w = (U_w^+, U_w^-)$ is defined by $U_w^+ = \{x \in [0, 1] \mid w(x) > 0\}, \ U_w^- = \{x \in [0, 1] \mid w(x) < 0\}.$

If U und U_1 are L_1 -signatures then $U_1 \supset U$ if $U_1^+ \supset U^+$ and $U_1^- \supset U^-$.

Lemma 2. Let $\alpha_0 \in P$ be regular. If U is a L₁-signature which is extremal for $v_0 = F(\alpha_0)$, then for every $q \in T(\alpha_0)$,

$$\int \varepsilon_U(x) \ q(x) \ d\mu(x) \ \leq \int_{Z(U)} |q(x)| \ d\mu(x).$$

Proof. $N = [0, 1] \setminus (U^+ \cup U^-)$ is closed. There are functions ε_1 , $\varepsilon_2 \in C[0, 1]$ with

$$\varepsilon_{1}(x) = \begin{cases} 0 & x \in N \cup U^{+} \\ & \text{if} \end{cases} \qquad \varepsilon_{2}(x) = \begin{cases} 0 & x \in N \cup U^{-} \\ & \text{if} \end{cases}$$

$$<0 \qquad x \in U^{-} \end{cases} \qquad \varepsilon_{2}(x) = \begin{cases} 0 & x \in N \cup U^{-} \\ & \text{if} \end{cases}$$

since $N \cup U^+$ and $N \cup U^-$ are closed. Let $w = v_0 + \varepsilon_1 + \varepsilon_2$. Then $U^+_{w-v_0} =$ $=U^+$, $U^-_{w-v_0}=U^-$ and since U is extremal for v_0 , by the KOLMOGOROFF criterion v_0 is a best approximation to w. Then since α_0 is regular, by theorem 1 the results follows. Using an idea of BROSOWSKI, WEGMANN [1, ,,Durchschnittsatz"] we obtain Substituting r. for n. we obtain that

Lemma 3. Let F[P] be an α -sun. Let $w \in C[0, 1]$ and suppose $v_0, v_1 \in F[P]$ are best approximations to w. Then $U = (U^+, U^-)$, with

$$U^{+} = U^{+}_{w - v_{\bullet}} \bigcup U^{+}_{w - v_{\iota}}, \quad U^{-} = U^{-}_{w - v_{\bullet}} \bigcup U^{-}_{w - v_{\iota}}$$

is a L_1 -signature which is extremal for v_0 . Furthermore

$$Z(U) \subset Z(v_1-v_0)$$
 and $\int \varepsilon_U(x)(v_1(x)-v_0(x)) d\mu(x) = 0.$

Proof. Let $\lambda > 0$ and $w_{\lambda} = w + \lambda(w - v_1)$. Since F[P] is an α -sun, v_1 is a best approximation to w_{λ} and $||w_{\lambda} - v_1|| = (1 + \lambda)||w - v_1||$.

However $\|w_{\lambda} - v_{0}\| \le \|w_{\lambda} - w\| + \|w - v_{0}\| = \lambda \|w - v_{1}\| + \|w - v_{0}\| + \|w - v_{1}\| + \|w - v_{0}\| = \lambda \|w - v_{1}\| + \|w - v_{0}\| + \|w - v_{1}\| +$ $w=(1+\lambda)\parallel w-v_1\parallel$. A sufficient diving LUL to disclusive and a disc

implies that v_0 is a best approximation to w_{λ} . Since F[P] is an α -sun for every $v \in F[P]$

$$\int_{U_{w_{\lambda}-v_{\bullet}}^{+}} (v(x) - v_{0}(x)) d\mu(x) - \int_{U_{w_{\lambda}-v_{\bullet}}^{-}} (v(x) - v_{0}(x)) d\mu(x) \leq \int_{Z(w_{\lambda}-v_{\bullet})} |v(x) - v_{0}(x)| d\mu(x)$$

$$- v_{0}(x) |d\mu(x).$$

i.e. $U_{w_{\lambda}} - v_{0}$ is extremal for v_{0} .

$$\|w_{\lambda}-v_{0}\| = \int |(w-v_{0})+\lambda(w-v_{1})|d\mu,$$

$$(1 + \lambda) \| w - v_1 \| = \int | w - v_0 | d\mu + \lambda \int | w - v_1 | d\mu.$$

Then $\|w_{\lambda} - v_{0}\| = \|w_{\lambda} - v_{1}\| = (1 + \lambda) \|w - v_{1}\|$ implies

$$\int |(w - v_0) + \lambda(w - v_1)| d\mu = \int |w - v_0| d\mu + \lambda \int |w - v_1| d\mu$$

and with $|(w(x) - v_0(x)) + \lambda (w(x) - v_1(x))| \le |w(x) - v_0(x)| + \cdots$

we obtain $(w(x) - v_0(x)) (w(x) - v_1(x)) \ge 0$ Consequently $U = U_{r_{\lambda} - v_{\bullet}}$. Since $Z(U) \cup Z(v_1 - v_0)$

 $\int_{U^+} (v_1 - v_0) \ d\mu - \int_{U^-} (v_1 - v_0) \ d\mu \le 0.$

Substituting v_1 for v_0 we obtain that U is extremal for v_1 , thus

$$\int\limits_{U^+} (v_0-v_1) \ d\mu - \int\limits_{U^-} (v_0-v_1) \ d\mu \leq 0$$
 and the lamps is v_1

and the lemma is proved. Let $v_0 \in F[P]$ and U is a I_{1} -signature. (F, P) has the property

L₁U at (v_0, U) if the following holds: If $U_1 \supset U$ and if there is a $v \in F[P]$, $v \neq v_0$ with $Z(v - v_0) \supset Z(U_1)$ and $\int \varepsilon_{U_1}(v-v_0) d\mu = 0$, then there is a $\alpha \in P$, so that

i) $F(\alpha) \neq v_0$; V to make a manufactor of $f(\alpha) \neq v_0$

5

ii)
$$Z(F(\alpha)-v_0)\supset Z(U_1), \int \varepsilon_{U_1}(F(\alpha)-v_0) d\mu=0;$$

iii) There is a $q \in T(\alpha)$ so that for almost every $x \in [0, 1]$,

$$q(x) = \begin{cases} >0 & x \in U_1^+ \\ 0 & \text{if } x \in Z(U_1) \\ <0 & x \in U_1^- \end{cases}$$

(F, P) has the property L_0U if it has the property at (v_0, U) for every $v_0 \in F[P]$ and every L_1 -signature U.

THEOREM 4. If P is regular, F[P] is an α -sun, $w \in C[0, 1]$ and vo is a best approximation to w, then vo is the only best approximation if (F, P) has the property L_1U at (v_0, U_{w-v_0}) .

Proof. Suppose there is a $v \in F[P]$, $v \neq v_0$ which is a best approximation to w. By lemma 3 $U^+ = U^+_{w-v} \cup U^+_{w-v_\bullet}$, $U^- = U^-_{w-v} \cup U^-_{w-v_\bullet}$ defines a L_1 -signature $U = (U^+, U^-)$ with $Z(U) \subset Z(v - v_0)$ and $\sigma_U (v - v_0)$ $-v_0$) $d\mu=0$. Since $U\supset U_{w-v_0}$ and (F, P) has the property L_1U at (v_0, U_{w-v_0}) , there is an $\alpha \in P$ with $F(\alpha) \neq v_0, Z(F(\alpha) - v_0) \supset Z(U)$, $\int \epsilon_U (F(\alpha) - v_0) d\mu = 0$ and there is a $q_0 \in T(\alpha)$ with

$$q_0(x) = \begin{cases} >0 & x \in U^+ \\ 0 & \text{if } x \in Z(U) \\ <0 & x \in U^- \end{cases}$$

for almost every $x \in [0, 1]$. But U is extremal for $F(\alpha)$. Together with lemma 2 we obtain a contradiction. As a corollary we obtain

THEOREM 5. If P is regular, F[P] is an α -sun and (F, P)has the property L_1U , then every $w \in C[0, 1]$ has at most one best approximation.

3. Examples. Let H be a linear subspace of C[0, 1] of finite dimension d and A a subset of [0, 1]. Then H is called a Haar space on A if every $v \in H$ has at most d-1 zeros in A.

1) Suppose for every $v_0 \in F[P]$ there is an $\alpha_0 \in P$, with $F(\alpha_0)$ $=v_{0'}$, $T(\alpha_0)$ is a Haar space on (0,1) and every difference $v-v_0$ with $v \in F[P]$, $v \neq v_0$ has at most $d(\alpha_0) - 1$ zeros in (0, 1). Then (F, P)has property L₁U.

Let $v_0 \in F[P]$ and U is a L₁-signature. Suppose there are $v \in F[P]$, $v \neq v_0$ and a L₁-signature $U_1 \supset U$ with $Z(v - v_0) \supset Z(U_1)$ and $\{z_{U_1} \mid v = v_0 \mid v \neq v_0 \mid v = v_0 \mid v \neq v_0 \mid v$

 $-v_0$ $d\mu = 0$. Then $Z(U_1) \cap (0, 1)$ contains at most $d(\alpha) - 1$ zeros. By a theorem of KREIN (see KARLIN, STUDDEN [4]) there is a $q \in$ $\in T(\alpha)$, which has the desired properties. So (F, P) has property $\mathbf{\hat{L}_1}\mathbf{U}$ at (v_0, U) (for every $v_0 \in F[P]$ and every I_1 -signature U).

Together with theorem 5 we obtain the generalization of results of TACKSON [3] and PTAK [5].

2) Let $n \in \mathbb{N}$, $E = \mathbb{R}^{n+1}$, $u_0, \ldots, u_n \in C[0, 1]$ linear independent and let $F: E \to T$ be given by $(\alpha_0, \ldots, \alpha_n) \to \Sigma \alpha_i u_i$. Instead of $F(\alpha)$

Let $0 \le k_1 < \ldots < k_r \le n$ and $0 \le l_1 < \ldots < l_s \le n$ so that $\{k_1, \ldots, k_r\} \cap \{l_1 \ldots l_s\} = \emptyset$. Let $A, B \subset \{1, 2, \ldots, r\}, a_i \in \mathbb{R} \ (j \in A)$ $b_j \in \mathbb{R} \ (j \in B) \text{ and } c_1, \dots c_s \in \mathbb{R}$. Let

 $P = \{(\alpha_0, \dots \alpha_n) \in E | a_j \leq \alpha_{k_j} \text{ for every } j \in A,$ $b_j \ge \alpha_{kj} \text{ for every } j \in A,$ $c_j = \alpha_{lj} \text{ } j = 1, 2, \dots s \}.$

Suppose $a_j < b_j$ if $j \in A \cap B$. If $\alpha \in P$ then

 $T(\alpha) = \{ \Sigma \beta_i u_i | \beta_{k_j} \ge 0 \text{ if } \alpha_{k_j} = a_j \text{ and } j \in A,$ $\beta_{k_j} \leq 0$ if $\alpha_{k_j} = b_j$ and $j \in B$, $\beta_{ij} = 0 \ j = 1, 2, \ldots, s \}$

Then P is regular, F[P] is convex, hence an α -sun.

Now suppose $u_i(x) = x^i$ for $x \in [0, 1]$ and $i = 0, 1, \ldots, n$. Then

$$F[P] = \{ P\alpha = \Sigma \alpha_i u_i \mid \bar{a_j} \leq F_{\alpha}^{(k_j)} \text{ (0) for every } j \in A,$$

$$\bar{b_j} \geq F_{\alpha}^{(k_j)} \text{ (0) for every } j \in B,$$

$$\bar{c_j} = F_{\alpha}^{(l_j)} \text{ (0) } j = 1, 2, \dots s \},$$

with $\tilde{a}_j = k_j! a_j$ $(j \in A)$, $\tilde{b}_j = k_j! b_j$ $(j \in B)$, $\tilde{c}_j = k_j! c_j$ $(j = 1, 2, \ldots, s)$ and for every $\alpha \in P$,

$$T(\alpha) = \{ q = \sum \beta_i u_i \mid q^{(k_i)}(0) \ge 0 \text{ if } F_{\alpha}^{(k_i)}(0) = \bar{a}_j \text{ and } j \in A,$$

$$q^{(k_i)}(0) \le 0 \text{ if } F_{\alpha}^{(k_j)}(0) = \bar{b}_j \text{ and } j \in B,$$

$$q^{(i_j)}(0) = 0 \text{ for } q \in \text{span}\{u_0, \dots, u_n\} \text{ and } j \in \{0, 1, \dots, n\} \text{ then}$$

If $q^{(j)}(0) = 0$ for $q \in \text{span}\{u_0, \ldots, u_n\}$ and $j \in \{0, 1, \ldots, n\}$, then $q \in \text{span}(\{u_0, \ldots, u_n\} \setminus \{u_j\})$. Thus

The state of the s

span $(\{u_{0'}, \ldots, u_n\} \setminus \{u_{l_1}, \ldots, u_{l_S}, (u)_{k_j}\}_{j \in I_1(\alpha) \cup I_2(\alpha)}\}) \subset T(\alpha),$

where $I_1(\alpha) = \{j \in A | F_{\alpha}^{(k_j)}(0) = \tilde{a}_j \}, \quad I_2(\alpha) = \{j \in B | F_{\alpha}^{(k_j)}(0) = \tilde{b} \}.$

Let $r_1(\alpha)$ (resp. $r_2(\alpha)$) the number of elements of $I_1(\alpha)$ (resp. $I_2(\alpha)$). We assume $k_1 > 0$, $l_1 > 0$. Then $r_1(\alpha) + r_2(\alpha) + s < n+1$ for every $\alpha \in P$. Let $m(\alpha) = (n+1) - (r_1(\alpha) + r_2(\alpha) + s)$ $(\alpha \in P)$. Let $v_1, v_0 \in F[P], v_1 \neq v_0$; $\hat{v} = F(\alpha) = \frac{1}{2} (v_1 + v_0)$. Then $\hat{v} - v_0$ has at most $m(\alpha) - 1$ zeros in (0, 1)(see WARTH [7]). As above we can use KREIN'S theorem to show that (F, P) has the property L_1U . Applying theorem 5 we obtain that there is at most one best approximation to every element of C[0, 1]. In WARTH [7] this has been shown in the case of uniform approximation by a similar method.

3) We can apply theorem 4 to restricted range approximation problems as in DEVORE [2] and we obtain the same result concerning uniqueness. Regularity in this case has been proved in WARTH [6].

4. Concluding remarks

7

6

A compaison of this paper with WARTH [7] shows, that the L_1 -approximation and the uniform approximation of continuous functions can be treated by similar theories. Still open is the problem if there are nonconvex α -suns in the case of L_1 -approximation.

> Lehrstühle für Numerische und Angewandte Mathematik der Universität Göttingen

REFERENCES

- [1] Brosowski, B., Wegmann, R. Charakterisierung bester Approximationen in normierten Vektorräumen, J. Approx. Th., 3 (1970).
- [2] De Vore, R., One-sided approximation of functions. J. Approx. Th., 1 (1968).
- [3] Jackson, D., A general class of problems in approximation. Am. J. Math., 46 (1924).
- [4] Karlin S., Studden, W. S., Tschebyscheff systems: With applications in analysis and statistics. Interscience Publ., New York, 1966.
- [5] Ptak, V., On the approximation of continuous functions in the metric $\int |x(t)| dt$. Czech. Math. T., 8 (1958).
- [6] Warth, W., Approximation with constraints in normed linearspaces (to appear in J. Approx. Th.).
- [7] Warth W. On the uniqueness of best uniform approximations in the presence of constraints (submitted for publication).

Received 2, VIII, 1977.