L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 9, Nº 2, 1980, pp. 163-179

and the start of the letter than the start of the start of

on the fact of the second of t

NECESSARY OPTIMALITY CRITERIA IN NONLINEAR PROGRAMMING IN COMPLEX SPACE WITH DIFFERENTIABILITY

end (f) apov fatbultrlog a stantil) = P. W

DOREL I. DUCA (Cluj-Napoca)

In this paper we consider the problem

(P) Minimize $\operatorname{Re} f(\mathbf{z}, \overline{\mathbf{z}})$ subject to $\mathbf{z} \in X$, $\mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}) \in S$,

where X is a nonempty open set in \mathbb{C}^n , S is a polyhedral cone in \mathbb{C}^m , $f: X \times \overline{X} \to C$ and $g: X \times \overline{X} \to \mathbb{C}^m$.

The paper is devided into four sections. In Section 1 notation is

The paper is devided into four sections. In Section 1 notation is introduced and some preliminary results are given. In Section 2 we establish a necessary condition of the Fritz John type for Problem (P). In Section 3 seven kinds of complex constraint qualification (CCQ) are given and relations between them are established. In Section 4 we prove a Kuhn-Tucker type necessary condition for Problem (P).

1. Notation and Preliminary Results

Let \mathbf{C}^n (\mathbf{R}^n) denote the *n*-dimensional complex (real) vector space with Hermitian (Euclidean) norm $||\cdot||$, $\mathbf{R}^n_+ = \{\mathbf{x}/\mathbf{x} = (x_j) \in \mathbf{R}^n, \ x_j \ge 0, \ j = 1, \ldots, n\}$ the non-negative orthant of \mathbf{R}^n , and $\mathbf{C}^{m \times n}$ the set of $m \times n$ complex matrices.

If **A** is a matrix or vector, then \mathbf{A}^T , $\overline{\mathbf{A}}$, \mathbf{A}^H denote its transpose, complex conjugate and conjugate transpose respectively. For $\mathbf{z} = (z_j)$, $\mathbf{w} = (w_j) \in \mathbb{C}^n$; $\langle \mathbf{z}, \mathbf{w} \rangle = \mathbf{w}^H \mathbf{z}$ denotes the inner product of \mathbf{z} and \mathbf{w} and $\operatorname{Re} \mathbf{z} = (\operatorname{Re} z_j) \in \mathbb{R}^n$ denotes the real part of \mathbf{z} .

If
$$\mathbf{x} = (x_j)$$
, $\mathbf{y} = (y_j) \in \mathbf{R}^n$, we consider $\mathbf{x} \le \mathbf{y}(\mathbf{x} < \mathbf{y})$ iff $x_j \le y_j(x_j < y_j)$ for any $j \in \{1, \ldots, n\}$, $\mathbf{x} \le \mathbf{y}$ iff $\mathbf{x} \le \mathbf{y}$ and $\mathbf{x} \ne \mathbf{y}$.

If
$$X \subseteq \mathbb{C}^n$$
 then $\overline{X} = \{ \mathbf{z} \in \mathbb{C}^n | \overline{\mathbf{z}} \in X \}$ and $-X = \{ \mathbf{z} \in \mathbb{C}^n | -\mathbf{z} \in X \}$.

The nonempty set S in \mathbb{C}^m is a polyhedral cone if it is an intersection of closed half-spaces in \mathbb{C}^m , each containing $\mathbf{0}$ in its boundary [3], i.e.

(1)
$$S = \bigcap_{k=1}^{p} H_{\mathbf{u}_{k}}$$
, where $H_{\mathbf{u}_{k}} = \{\mathbf{v} \in \mathbb{C}^{m} | \operatorname{Re} \langle \mathbf{v}, \mathbf{u}_{k} \rangle \geq 0\}$, $k = \overline{1, p}$.

The polar S^* of the nonempty set S in \mathbb{C}^m is defined by

$$S^* = \{\mathbf{u} \in \mathbf{C}^n | \mathbf{v} \in S \Rightarrow \text{Re } \langle \mathbf{u}, \mathbf{v} \rangle \ge 0\}.$$

If
$$S = \bigcap_{k=1}^{p} H_{\mathbf{u}_{k}}$$
 is a polyhedral cone (1), then

int
$$S = \{ \mathbf{v} \in \mathbb{C}^m | \text{Re } \langle \mathbf{v}, \mathbf{u}_k \rangle > 0, \ k = 1, \dots, p \}.$$

or equivalently.

int
$$S = \{ \mathbf{v} \in \mathbb{C}^m / \mathbf{0} \neq \mathbf{u} \in S^* \Rightarrow \text{Re } \langle \mathbf{v}, \mathbf{u} \rangle > 0 \},$$

and int $S = \emptyset$ iff $S^* \cap (-S^*) = \{0\}$, [6].

A nonempty set S in \mathbb{C}^m is a closed convex cone iff $(S^*)^* = S$. [3]. Let X be an open set in \mathbb{C}^n and let $\mathbf{z}^0 \in X$. A function $\mathbf{c} = (\varrho_*) (\mathbf{w}^1)$ \mathbf{w}^2): $X \times \overline{X} \to \mathbf{C}^p$ is differentiable at $(\mathbf{z}^0, \overline{\mathbf{z}^0}) \in X \times \overline{X}$ if for all $\mathbf{z} \in X$:

(2)
$$\mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}) = \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}}^0) + [\nabla_{\mathbf{z}}\mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}}^0)]^T(\mathbf{z} - \mathbf{z}^0) + \\ + [\nabla_{\overline{\mathbf{z}}}\mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}}^0)]^T(\overline{\mathbf{z}} - \overline{\mathbf{z}}^0) + ||\mathbf{z} - \mathbf{z}^0||\mathbf{a}(\mathbf{z}, \mathbf{z}^0),$$
where

$$\nabla_{\mathbf{z}}\mathbf{g}(\mathbf{z}^0, \ \overline{\mathbf{z}^0}) = \left(\frac{\partial g_k}{\partial w_j^1} (\mathbf{z}^0, \ \overline{\mathbf{z}^0})\right)_{\substack{1 \leq k \leq p \\ 1 \leq j \leq n}} \in \mathbb{C}^{n \times p},$$

$$abla_{f z} {f g}({f z^0}, \ {f ar z^0}) = \left(rac{\partial g_k}{\partial w_j^2} \, ({f z^0}, \ {f ar z^0})
ight)_{\substack{1 \leq k \leq p \ 1 \leq j \leq n}} \in {f C}^{n imes p},$$

and the lot less said at \$1 \text{ Int a W to third for not tage, non-said [w. . . .

$$\lim_{\mathbf{z} \to \mathbf{z}^0} \mathbf{a}(\mathbf{z}, \mathbf{z}^0) = \mathbf{0}$$

DEFINITION 1. Let X be a nonempty set in \mathbb{C}^n , let $\mathbf{z}^0 \in X$, and let S be a closed convex cone in \mathbb{C}^m . The function $q: X \times \overline{X} \to \mathbb{C}^m$ is said to be

a) convex at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ with respect to S if

$$\begin{vmatrix}
\mathbf{z} \in X \\
0 \le \lambda \le 1 \\
(1 - \lambda)\mathbf{z}^0 + \lambda \mathbf{z} \in X
\end{vmatrix} \Rightarrow \frac{\lambda \mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}) + (1 - \lambda)\mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}}^0) - \mathbf{g}(\lambda \mathbf{z} + \mathbf{z})}{+ (1 - \lambda)\mathbf{z}^0, \ \lambda \overline{\mathbf{z}} + (1 - \lambda)\overline{\mathbf{z}}^0)} \in S.$$

NECESSARY OPTIMALITY CRITERIA IN NONLINEAR PROGRAMMING

If in addition X is open and g is differentiable at $(z^0, \overline{z^0})$, then from (4) it follows that

$$g(\mathbf{z}, \overline{\mathbf{z}}) - g(\mathbf{z}^0, \overline{\mathbf{z}}^0) - [\nabla_{\mathbf{z}} g(\mathbf{z}^0, \overline{\mathbf{z}}^0)]^T (\mathbf{z} - \mathbf{z}^0) - [\nabla_{\overline{\mathbf{z}}} g(\mathbf{z}^0, \overline{\mathbf{z}}^0)]^m (\overline{\mathbf{z}} - \overline{\mathbf{z}}^0) \in S$$

for each $z \in X$. Once (as well a set x = x), is x = x

b) pseudo-convex at $(\mathbf{z}^0, \overline{\mathbf{z}}^0)$ with respect to S if X is open, y is differentiable at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ and for any $\mathbf{z} \in X$

$$(5) \qquad [\bigtriangledown_{\mathbf{z}} g(\mathbf{z}^{0}, \mathbf{z}^{0})]^{T}(\mathbf{z} - \mathbf{z}^{0}) + [\bigtriangledown_{\mathbf{z}} g(\mathbf{z}^{0}, \mathbf{z}^{0})]^{T}(\mathbf{z} - \mathbf{z}^{0}) \in S \Rightarrow$$

$$\Rightarrow g(\mathbf{z}, \mathbf{z}) - g(\mathbf{z}^{0}, \mathbf{z}^{0}) \in S.$$

- e) concave (pseudo-concave) at (z^0, \overline{z}^0) with respect to S if y is convex (pseudo-convex) at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ with respect to -S.
- d) convex (pseudo-convex, concave, pseudo-concave) on $X \times \overline{X}$ with respect to S if X is convex and q is convex (pseudo-convex concave, pseudoconcave) at any $(\mathbf{z}, \overline{\mathbf{z}}) \in X \times \overline{X}$ with respect to S.
- e) with convex (pseudo-convex) real part at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ with respect to a closed convex cone T in \mathbb{R}^m if q is convex (pseudo-convex), at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ with respect to the closed convex cone $CT = \{ \mathbf{v} \in \mathbb{C}^m | \text{Re } \mathbf{v} \in T \} \subseteq C^m$.
- f) with convex (pseudo-convex) real part on $X \times \overline{X}$ with respect to a closed convex cone T in \mathbb{R}^m if X is convex and \mathfrak{g} is with convex (pseudoconvex) real part at any $(\mathbf{z}, \overline{\mathbf{z}}) \in X \times \overline{X}$ with respect to T.

LEMMA 1. Let $A \in C^{p \times n}$, $B \in C^{q \times n}$ and $D \in C^{r \times n}$ be given matrices, with A being nonvacuous. Then exactly one of the following two systems has tet S = 1 that he is bulyhedres come is to and les a solution:

Re
$$(Az) > 0$$
, Re $(Bz) \ge 0$, $Dz = 0$, $z \in \mathbb{C}^n$,
$$\begin{cases}
A^H \mathbf{u} + \mathbf{B}^H \mathbf{v} + \mathbf{D}^H \mathbf{w} = \mathbf{0}, & \mathbf{u} \in \mathbf{R}^p, & \mathbf{v} \in \mathbf{R}^q, & \mathbf{w} \in \mathbf{C}^r, \\
\mathbf{u} \ge \mathbf{0}, & \mathbf{v} \ge \mathbf{0}.
\end{cases}$$

The proof is given in [7].

tant from \$1 and retre

LEMMA 2. Let X be a nonempty convex set in \mathbb{C}^n , let $\mathbf{f}_k: X \times \overline{X} \to \mathbb{C}^{n_k}$, k = 1, 2, 3 be vector functions having convex real part on $X \times \overline{X}$ with respect to $\mathbf{R}_+^{m_k}$ k = 1, 2, 3, and let $\mathbf{h}: \mathbb{C}^{2n} \to \mathbb{C}^p$ be a linear vector function. If the system:

Re $f_1(\mathbf{z}, \overline{\mathbf{z}}) < \mathbf{0}$, Re $f_2(\mathbf{z}, \overline{\mathbf{z}}) \leq \mathbf{0}$, Re $f_3(\mathbf{z}, \overline{\mathbf{z}}) \leq \mathbf{0}$, $h(\mathbf{z}, \overline{\mathbf{z}}) = \mathbf{0}$, has no solution $\mathbf{z} \in X$, then there exist $\lambda^k \in \mathbf{R}_+^{m_k}$, k = 1, 2, 3, and $\mu \in \mathbf{C}^p$ such that

$$(\lambda^1, \lambda^2, \lambda^3, \mu) \neq 0$$

ana

$$\operatorname{Re}\left[\sum_{k=1}^{3}\langle \mathbf{f}_{k}(\mathbf{z},\ \overline{\mathbf{z}}),\ \lambda^{k}\rangle + \langle \mathbf{h}(\mathbf{z},\ \overline{\mathbf{z}}),\ \mu\rangle\right] \geq 0,$$

for all $z \in X$.

The proof is given in [7].

LEMMA 3. Let $S = \bigcap_{k=1}^{p} H_{\mathbf{u}_k}$ be a polyhedral cone in \mathbb{C}^m , let $k \in \{1, \ldots, p\}$ be fixed, and let X be a nonempty convex set in \mathbb{C}^n . If $\mathbf{g}: X \times \overline{X} \to \mathbb{C}$ is concave on $X \times \overline{X}$ with respect to S, then the function $h_k: X \times \overline{X} \to \mathbb{C}$ defined by the formula

$$h_k(\mathbf{z}, \mathbf{w}) = -\langle \mathbf{g}(\mathbf{z}, \mathbf{w}), \mathbf{u}_k \rangle \text{ for all } (\mathbf{z}, \mathbf{w}) \in X \times \overline{X},$$

has convex real part on $X \times \overline{X}$ with respect to \mathbf{R}_+ .

The proof is given in [7].

2. A Fritz John Theorem in Complex Space

THEOREM 1. Let X be a snonempty open set in \mathbb{C}^n and let $\mathbf{z}^0 \in X$. Let $f: X \times \overline{X} \to \mathbb{C}$ and $g: X \times \overline{X} \to \mathbb{C}^m$ be differentiable functions at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$, let $S = \bigcap_{k=1}^p H_{\mathbf{u}_k}$ be a polyhedral cone in \mathbb{C}^m and let

$$E = \{k \in \{1, \dots, p\} \mid \text{Re } \langle \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0}), \mathbf{u}_k \rangle = 0\}.$$

(6) $I = \{k \in E \mid g \text{ is pseudo-convex at } (\mathbf{z}^0, \overline{\mathbf{z}^0}) \text{ with respect to } H_{\mathfrak{a}_k}\}$

$$J = E \setminus I$$
, $L = \{1, \ldots, p\} \setminus E$.

If zo is a local minimum point of Problem (P), then the system

(7)
$$\operatorname{Re}\left[\overline{\nabla_{\mathbf{z}}f(\mathbf{z}^{0},\ \mathbf{z}^{0})} + \nabla_{\mathbf{z}}f(\mathbf{z}^{0},\ \mathbf{z}^{0})\right]^{H}\mathbf{z} < 0.$$

(8)
$$\operatorname{Re}\left[\nabla_{\mathbf{z}}\mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})\mathbf{u}_{k} + \nabla_{\bar{\mathbf{z}}}\mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})\overline{\mathbf{u}_{k}}\right]^{H}\mathbf{z} > 0, \quad k \in J,$$

(9)
$$\operatorname{Re}\left[\nabla_{\mathbf{z}}\mathfrak{g}(\mathbf{z}^{0},\overline{\mathbf{z}^{0}})\mathbf{u}_{k}+\nabla_{\overline{\mathbf{z}}}\mathfrak{g}(\mathbf{z}^{0},\overline{\mathbf{z}^{0}})\overline{\mathbf{u}}_{k}\right]^{H}\mathbf{z}\geq\mathbf{0},\quad k\in I,$$

has no solution $z \in \mathbb{C}^n$.

Proof. Let \mathbf{z}^0 be a local minimum point of Problem (P), i.e. there exists $\widetilde{\delta} > 0$ such that if

(10)
$$B(\mathbf{z}^{0}; \widetilde{\delta}) = \{\mathbf{z} \in \mathbb{C}^{n} \mid ||\mathbf{z} - \mathbf{z}^{0}|| < \widetilde{\delta}\}$$

and

5

$$Y = \{ \mathbf{z} \in X / \mathbf{y}(\mathbf{z}, \overline{\mathbf{z}}) \in S \},$$

then

(11) Re
$$f(\mathbf{z}, \overline{\mathbf{z}}) \ge \operatorname{Re} f(\mathbf{z}^0, \overline{\mathbf{z}}^0)$$
 for all $\mathbf{z} \in B(\mathbf{z}^0; \widetilde{\delta}) \cap Y$.

We shal show that if \mathbf{z} satisfies the system (7) - (9), then a contradiction arises. Let \mathbf{z} be a solution of the system (7) - (9). Then, since X is open and $\mathbf{z}^0 \in X$, there exists a $\hat{\delta} > 0$ such that

(12)
$$\mathbf{z}^{0} + \delta \mathbf{z} \in X \text{ for all } \mathbf{0} \leq \delta < \widehat{\delta}.$$

Since f and g are differentiable at $(\mathbf{z}^0, \overline{\mathbf{z}}^0)$ from (2) we have that for all $\delta \in [0, \widehat{\delta}[$

(13)
$$f(\mathbf{z}^{0} + \delta \mathbf{z}, \overline{\mathbf{z}}^{0} + \delta \overline{\mathbf{z}}) = f(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0}) + \delta \{ [\nabla_{\mathbf{z}} f(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0})]^{T} \mathbf{z} + [\nabla_{\overline{\mathbf{z}}} f(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0})]^{T} \overline{\mathbf{z}} \} + \delta ||\mathbf{z}|| a_{0} (\mathbf{z}^{0} + \delta \mathbf{z}, \mathbf{z}^{0})$$

and

(14)
$$\mathbf{g}(\mathbf{z}^{0} + \delta \mathbf{z}, \overline{\mathbf{z}}^{0} + \delta \overline{\mathbf{z}}) = \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0}) + \delta\{ [\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0})]^{T} \mathbf{z} + \nabla_{\overline{\mathbf{z}}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0})]^{T} \overline{\mathbf{z}} \} + \delta ||\mathbf{z}|| \mathbf{a}(\mathbf{z}^{0} + \delta \mathbf{z}, \mathbf{z}^{0}),$$

where

(15)
$$\lim_{\delta \to 0} a_0(\mathbf{z}^0 + \delta \mathbf{z}, \mathbf{z}^0) = 0 \quad \text{and} \quad \lim_{\delta \to 0} \mathbf{a}(\mathbf{z}^0 + \delta \mathbf{z}, \mathbf{z}^0) = \mathbf{0}.$$

From (14) and (15) it follows that

(16)
$$\operatorname{Re}\langle \mathbf{g}(\mathbf{z}_{0} + \delta \mathbf{z}, \overline{\mathbf{z}}^{0} + \delta \overline{\mathbf{z}}), \mathbf{u}_{k} \rangle = \operatorname{Re}\langle \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}), \mathbf{u}_{k} \rangle + \\ + \operatorname{Re}\langle [\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0})]^{T} \mathbf{z} + [\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0})^{T}] \overline{\mathbf{z}}, \mathbf{u}_{k} \rangle + \\ + \delta ||\mathbf{z}|| \operatorname{Re}\langle \mathbf{a}(\mathbf{z}^{0} + \delta \mathbf{z}, \mathbf{z}^{0}), \mathbf{u}_{k} \rangle$$

for all $k \in \{1, \ldots, p\}$ and $\delta \in [0, \hat{\delta}[$, and

(17)
$$\lim_{\delta \to 0} \langle \operatorname{Re} \langle \mathbf{a}(\mathbf{z}^0 + \delta \mathbf{z}, \mathbf{z}^0), \mathbf{u}_k \rangle = 0 \text{ for all } k \in \{1, \ldots, p\}.$$

(i) Let $k \in J$. Then from (16), (17) and (8) we deduce that there exists $\delta_{k} \in (0, \delta)$ such that

Re
$$\langle \mathbf{g}(\mathbf{z}^0 + \delta \mathbf{z}, \overline{\mathbf{z}^0} + \delta \overline{\mathbf{z}}), \mathbf{u}_k \rangle \geqslant \operatorname{Re} \langle \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0}), \mathbf{u}_k \rangle$$
 for all $\delta \in]0, \delta_k[$.
Since $\operatorname{Re} \langle \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0}), \mathbf{u}_k \rangle = 0, k \in J \subseteq E$, it follows that

(18)
$$g(\mathbf{z}^0 + \delta \mathbf{z}, \ \overline{\mathbf{z}}^0 + \delta \overline{\mathbf{z}}) \in H_{\mathbf{u}_k} \text{ for all } \delta \in]0, \ \delta_k[, \ k \in J.$$

(ii) Let $k \in I$. Since g is pseudo-convex at $(z^0, \overline{z^0})$ with respect to $H_{\mathbf{u}_{b}}$, $k \in I$, from (5) and (9) we infer that the first $k \in I$,

uxul x* s N. there leaders a_8 > 0 sum Re $\langle \mathbf{q}(\mathbf{z}^0 + \delta \mathbf{z}, \overline{\mathbf{z}^0} + \delta \overline{\mathbf{z}}) - \mathbf{q}(\mathbf{z}^0, \overline{\mathbf{z}^0}), \mathbf{u}_k \rangle \ge 0$, for all $\delta \in]0, \delta[$ and hence

(19)
$$g(\mathbf{z}^0 + \delta \mathbf{z}, \, \overline{\mathbf{z}^0} + \delta \overline{\mathbf{z}}) \in H_{\mathbf{u}_b}$$
, for all $\delta \in]0, \, \hat{\delta}[$ and $k \in I$.

(iii) Let $k \in L$. Then, from (16) and (17), it follows that there exists $\delta_k \in [0, \ \hat{\delta}[\text{ such that } \operatorname{Re} \langle \mathfrak{g}(\mathbf{z}^0 + \delta \mathbf{z}, \ \overline{\mathbf{z}^0} + \delta \overline{\mathbf{z}}), \ \mathbf{u}_k \rangle \ge 0 \text{ for } \delta \in]0, \ \delta_k[,]$ and hence (2x, 2x8 3 - 2x) at 12 + 5 m (x 1 Px 2x) (x 1

(20)
$$\mathbf{y}(\mathbf{z}^0 + \delta \mathbf{z}, \ \overline{\mathbf{z}^0} + \delta \overline{\mathbf{z}}) \in H_{\mathbf{u}_k} \text{ for } \delta \in]0, \ \delta_k[, \ k \in L.]$$

(iv) From (13), (15) and (7) we deduce that there exists $\delta_0 \in (0, \hat{\delta})$ such that

(21) Re
$$f(\mathbf{z}^0 + \delta \mathbf{z}, \overline{\mathbf{z}^0} + \delta \overline{\mathbf{z}}) < \text{Re } f(\mathbf{z}^0, \overline{\mathbf{z}^0})$$
, for all $\delta \in [0, \delta_0[$.

Let r be the minimum of all positive numbers δ , δ , δ_0 , $\delta_k(k \in I \cup L)$. Then, from (10), (12), (18)—(21) we have $\mathbf{z}^0 + \delta \mathbf{z} \in B(\mathbf{z}^0; \widetilde{\delta}) \cap Y$ and $\operatorname{Re} f(\mathbf{z}^0 + \delta \mathbf{z}, \overline{\mathbf{z}^0} + \delta \overline{\mathbf{z}}) < \operatorname{Re} f(\mathbf{z}^0, \overline{\mathbf{z}^0})$ for all $\delta \in [0, r]$, which contradicts (11). Hence the system (7)—(9) has no solution z in C^n .

THEOREM 2. Let X be a nonempty open set in \mathbb{C}^n , let $\mathbf{z}^0 \in X$, let $S = \bigcap^p H_{\mathbf{u}_h}$ be a polyhedral cone in \mathbb{C}^m with nonempty interior, let $f: X \times \overline{X} \to \mathbb{C}$ and $g: X \times \overline{X} \to \mathbb{C}^m$ be differentiable functions at (z^0, \overline{z}^0) and let E, I and J be defined by (6).

If z^0 is a local minimum point of Problem (P), then there exist $\tau \in \mathbf{R}_+$ and $\mathbf{u} \in \left(\bigcap H_{\mathbf{u}_k} \right)^{\kappa} \subseteq S^*$ such that:

(I) there exists $\lambda = (\lambda_b) \in \mathbf{R}_{+}^{m}$ with:

a)
$$\mathbf{u} = \sum_{k=1}^{p} \lambda_k \mathbf{u}_k$$

b)
$$\lambda_k = 0$$
 for any $\mathbf{k} \in \{1, \ldots, p\} \setminus E$.

c) if
$$\mathbf{u}_J = \sum_{k \in I} \lambda_k \mathbf{u}$$
, then $(\tau, \mathbf{u}_J) \neq \mathbf{0}$,

$$(\mathrm{II}) \ \tau \overline{\bigtriangledown_{\mathbf{z}} f(\mathbf{z}^0, \ \overline{\mathbf{z}^0})} + \tau \overline{\bigtriangledown_{\mathbf{z}}} f(\mathbf{z}^0, \ \overline{\mathbf{z}^0}) - \overline{\bigtriangledown_{\mathbf{z}} \mathfrak{g}(\mathbf{z}^0, \ \overline{\mathbf{z}^0})} \mathbf{u} - \overline{\bigtriangledown_{\mathbf{z}} \mathfrak{g}(\mathbf{z}^0, \ \overline{\mathbf{z}^0})} \overline{\mathbf{u}} = \mathbf{0},$$

(III) Re
$$\langle g(\mathbf{z}^0, \ \overline{\mathbf{z}}^0), \ \mathbf{u} \rangle = 0.$$

Proof. In view of Theorem 1, System (7)—(9) has no solution $z \in \mathbb{C}^n$ Then, by Lemma 1 the system

(22)
$$\tau\left[\overline{\nabla_{\mathbf{z}}f(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})} + \overline{\nabla_{\mathbf{z}}}f(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})\right] - \sum_{k \in E} \mu_{k}\left[\overline{\nabla_{\mathbf{z}}g(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})}\mathbf{u}_{k} + \overline{\nabla_{\mathbf{z}}}g(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})\mathbf{u}_{k}\right] = \mathbf{0}$$

has a solution $(\tau, \mu_E) \geqslant 0$ with

(23)
$$(\tau, \mu_I) \geqslant \mathbf{0}$$
 and $\mu_I \geq 0$,

where $\mu_E = (\mu_k)_{k \in E}$, $\mu_J = (\mu_k)_{k \in J}$ and $\mu_J = (\mu_k)_{k \in I}$.

Define who you was a sugary (1911) 100 sounds any three years

(24)
$$\mathbf{u}_I = \sum_{k \in I} \lambda_k \mathbf{u}_k, \quad \mathbf{u}_J = \sum_{k \in J} \lambda_k \mathbf{u}_k \text{ and } \mathbf{u} = \sum_{k=1}^p \lambda_k \mathbf{u}_k,$$
 where

$$\lambda_k = \begin{cases} \mu_k, & \text{if } k \in E \\ 0, & \text{if } k \in \{1, \dots, p\} \setminus E, \end{cases}$$

- L'analyse numérique et la théorie de l'approximation - Tome 9, No. 2, 1980

We have that $\mathbf{u} \in (\bigcap_{k \in E} H_{\mathbf{u}_k})^* \subseteq S^*$, and from (22) and (24) follows (Ia), (Ib), (II) and (III). It remained to show that $(\tau, \mathbf{u}_J) \neq 0$.

(i) If $\tau \neq 0$, we have that $(\tau, \mathbf{u}_J) \neq 0$.

(ii) If $\tau = 0$, from (23) it follows that $\mu_J \ge \mathbf{0}$. If $\mathbf{u}_J = \mathbf{0}$, the system $\mathbf{u}_J = \sum_{k \in J} \mu_k \mathbf{u}_k = \mathbf{0}$, $\mu_k \ge 0$ has a solution. By Lemma 1, the system $\text{Re}\langle \mathbf{w}, \mathbf{u}_k \rangle > 0$, $k \in J$ has no solution $\mathbf{w} \in \mathbf{C}^m$, which contradicts int $S \ne \emptyset$. Consequently $\mathbf{u} \ne \mathbf{0}$, hence $(\tau, \mathbf{u}_J) \ne \mathbf{0}$.

COROLLARY 1. If the conditions of Theorem 2 are fulfilled and $J=\emptyset$, then $\tau \neq 0$.

3. Seven Kinds of Complex Constraint Qualification

DEFINITION 2. Let X be a nonempty set in \mathbb{C}^n and let S be a closed convex cone in \mathbb{C}^m .

The function $g: X \times \overline{X} \to \mathbb{C}^m$ which defines the set $Y = \{z \in X / g(z, \overline{z}) \in S\}$, is said to satisfy:

1°. Slater's complex constraint qualification (CCQ) with respect to Y [6] if int $S \neq \emptyset$ and there exists $\mathbf{z}^1 \in X$ such that $\mathfrak{g}(\mathbf{z}^1, \overline{\mathbf{z}}^1) \in \text{int } S$.

2°. the strict CCQ with respect to Y [6] if int $S \neq \emptyset$ and there exist two points \mathbf{z}^0 , $\mathbf{z}^1 \in Y$, $\mathbf{z}^0 \neq \mathbf{z}^1$ and $\lambda \in]0$, 1[such that $\mathbf{z}(\lambda) = (1 - \lambda)\mathbf{z}^0 + \lambda \mathbf{z}^1 \in X$ and

$$g[z(\lambda), \overline{z(\lambda)}] - (1-\lambda)g(z^0, \overline{z}^0) - \lambda g(z^1, \overline{z}^1) \in \text{int } S.$$

3°. Karlin's CCQ with respect to Y if there exists no $\mathbf{v} \in S^*$, $\mathbf{v} \neq \mathbf{0}$ such that

$$\operatorname{Re} \langle g(\mathbf{z}, \overline{\mathbf{z}}), \mathbf{v} \rangle \leq 0 \text{ for all } \mathbf{z} \in X.$$

LEMMA 4. Let X be a nonempty set in \mathbb{C}^n , let $S = \bigcap_{k=1}^p H_{\mathbf{u}_k}$ be a polyhedral cone in \mathbb{C}^m let $\mathbf{g}: X \times \overline{X} \to \mathbb{C}^m$, and let $Y = \{\mathbf{z} \in X / \mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}) \in S\}$.

(i) If g satisfies Slater's CCQ with respect to Y, then g satisfies Karlin's CCQ with respect to Y.

(ii) If g satisfies the strict CCQ with respect to Y, then g satisfies Slater's CCQ with respect to Y.

(iii) If in addition X is convex, int $S \neq \emptyset$ and g is concave on $X \times \overline{X}$ with respect to S, then Karlin's CCQ and Slater's CCQ are equivalent.

Proof. (i) Let g satisfy Slater's CCQ. Then int $S \neq \emptyset$ and there exists $\mathbf{z^1} \in X$ such that $g(\mathbf{z^1}, \mathbf{z^1}) \in \text{int } S$. Now, if $\mathbf{v} \in S^*$ and $\mathbf{v} \neq \mathbf{0}$, it follows

that Re $\langle \mathfrak{g}(\mathbf{z}^1, \overline{\mathbf{z}^1}), \mathbf{v} \rangle > 0$, and hence there exists no $\mathbf{v} \in S^*$, $\mathbf{v} \neq \mathbf{0}$ such that Re $\langle \mathfrak{g}(\mathbf{z}, \overline{\mathbf{z}}), \mathbf{v} \rangle \leq 0$ for all $\mathbf{z} \in X$.

(ii) If the strict CCQ with respect to Y is satisfied, then int $S \neq \emptyset$ and there exist two points \mathbf{z}^0 , $\mathbf{z}^1 \in Y$, $\mathbf{z}^0 \neq \mathbf{z}^1$ and $\lambda \in]0$, I such that $\mathbf{z}(\lambda) = (1 - \lambda)\mathbf{z}^0 + \lambda \mathbf{z}^1 \in X$ and $\operatorname{Re} \langle \mathbf{g}[\mathbf{z}(\lambda), \overline{\mathbf{z}(\lambda)}] - (1 - \lambda) \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0}) \sim -\lambda \mathbf{g}(\mathbf{z}^1, \overline{\mathbf{z}^1}), \mathbf{v} \rangle > 0$ for all $\mathbf{v} \in S^*$, $\mathbf{v} \neq \mathbf{0}$. Since \mathbf{z}^0 , $\mathbf{z}^1 \in Y$, we have $\operatorname{Re} \langle \mathbf{g}[\mathbf{z}(\lambda), \overline{\mathbf{z}(\lambda)}], \mathbf{v} \rangle > 0$ for all $\mathbf{v} \in S^*$, $\mathbf{v} \neq \mathbf{0}$, hence the point $\mathbf{z} = \mathbf{z}(\lambda) \in X$ has the property that $\mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}) \in \operatorname{int} S$.

(iii) Let $\mathfrak g$ satisfy Karlin's CCQ with respect to Y. If $\mathfrak g$ does not satisfy Slater's CCQ, then the system

$$-\operatorname{Re}\langle \mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}), \mathbf{u}_k \rangle < 0, \ k \in \{1, \ldots, p\},$$

has no solution $\mathbf{z} \in X$. Then, by Lemmas 3 and 2, there exists $\lambda = (\lambda_k) \in \mathbb{R}^p$, $\lambda \geq 0$ such that $-\operatorname{Re} \langle \mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}), \mathbf{v} \rangle \geq 0$ for all $\mathbf{z} \in X$, where $\mathbf{v} = \sum_{k=1}^p \lambda_k \mathbf{u}_k$. Obviously, $\mathbf{v} \in S^*$. If $\mathbf{v} = \mathbf{0}$, the system $\sum_{k=1}^p \lambda_k \mathbf{u}_k = \mathbf{0}$, $\lambda = (\lambda_k) \geq \mathbf{0}$ has a solution, hence by Lemma 1, the system $\operatorname{Re} \langle \mathbf{w}, \mathbf{u}_k \rangle > 0$, $k = 1, \ldots, p$ has no solution $\mathbf{w} \in \mathbb{C}^n$, which contradicts int $S \neq \emptyset$. Consequently $\mathbf{v} \neq \mathbf{0}$. Hence, there exists $\mathbf{v} \in S^*$, $\mathbf{v} \neq \mathbf{0}$ such that $\operatorname{Re} \langle \mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}), \mathbf{v} \rangle \leq 0$ for all $\mathbf{z} \in X$, but this contradicts the fact that \mathbf{g} satisfies Karlin's CCQ. From this and (i) it follows that Slater's CCQ and Karlin's CQQ are equivalent.

DEFINITION 3. Let X be an open set in \mathbb{C}^n , let $S = \bigcap_{k=1}^p H_{\mathbf{u}_k}$ be a polyhedral cone in \mathbb{C}^n .

The function $g: X \times \overline{X} \to \mathbb{C}^m$ which defines the set $Y = \{z \in X / g(z, \overline{z}) \in S\}$, is said to satisfy:

1°. the Arrow-Hurwicz-Uzawa CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}}^0) \in Y \times \overline{Y}$ if \mathbf{g} is differentiable at $(\mathbf{z}^0, \overline{\mathbf{z}}^0)$ and if

(25)
$$\operatorname{Re} \langle \overline{\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}}^{0})} \mathbf{u}_{k} + \overline{\nabla_{\mathbf{z}}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{u}}_{k}, \mathbf{z} \rangle > 0, \ k \in J$$

$$\operatorname{Re} \langle \overline{\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})} \mathbf{u}_{k} + \overline{\nabla_{\mathbf{z}}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{u}}_{k}, \mathbf{z} \rangle \ge 0, \ k \in I$$

has a solution $z \in \mathbb{C}^n$, where I and J are the sets defined by (6).

2°. the reverse concave CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}}^0) \in Y \times \overline{Y}$ if \mathfrak{g} is differentiable at $(\mathbf{z}^0, \overline{\mathbf{z}}^0)$ and pseudo-convexe at $(\mathbf{z}^0, \overline{\mathbf{z}}^0)$ with respect to $H_{\mathbf{u}_k}$ for all $k \in E$ (E is the set defined by (6)).

10

 3° . the Kuhn-Tucker CCQ at $(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \in Y \times \overline{Y}$ [1] if \mathbf{g} is differentiable at $(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})$ and for all $\mathbf{z} \in C^{n}$ with

$$(26) \qquad \overline{\left[\nabla_{\mathbf{z}}\mathbf{g}(\mathbf{z}^{0}, \ \overline{\mathbf{z}}^{0})\right]^{T}}\mathbf{z} + \left[\nabla_{\overline{\mathbf{z}}}\mathbf{g}(\mathbf{z}^{0}, \ \overline{\mathbf{z}}^{0})\right]^{T}\overline{\mathbf{z}} \in \bigcap_{k \in \mathbb{R}} H_{\mathbf{u}_{k}},$$

there exists an $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$ and a function $\mathbf{b} : [0, \varepsilon[\to \mathbb{C}^n \ differentiable$ at 0, such that $\mathbf{b}(0) = \mathbf{z}^0$, $\frac{d}{dt} \mathbf{b}(0) = \mathbf{z}$, and $\mathbf{b}(t) \in X$, $\mathbf{g}[\mathbf{b}(t), \overline{\mathbf{b}(t)}] \in S$ for $0 \le t < \varepsilon$.

and 4° . the weak CCQ at $(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \in Y \times \overline{Y}$ [6] if \mathbf{g} is differentiable at $(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})$

(27)
$$\begin{pmatrix}
\overline{\nabla}_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \mathbf{v} + \nabla_{\overline{\mathbf{z}}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{v}} = \mathbf{0} \\
\operatorname{Re} \langle \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}), \mathbf{v} \rangle = 0 \\
\mathbf{v} \in S^{*}
\end{pmatrix} imply \mathbf{v} = \mathbf{0}.$$

LEMMA 5. Let X be an open set in \mathbb{C}^n , let $S = \bigcap_{k=1}^p H_{\mathbf{u}_k}$ be a polyhedral sone in \mathbb{C}^m , let $\mathbf{g}: X \times \overline{X} \to \mathbb{C}^m$ and let $\mathbf{z}^0 \in Y = \{\mathbf{z} \in X | \mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}) \in S\}$.

(i) If g satisfies the reverse concave CCQ at $(z^0, \overline{z^0})$, then g satisfies the Arrow-Hurwicz-Uzawa CCQ at $(z^0, \overline{z^0})$.

(ii) If g satisfies the reverse concave CCQ at $(z^0, \overline{z^0})$, then g satisfies the Kuhn-Tucker CCQ at $(z^0, \overline{z^0})$.

(iii) Let g be concave at $(z^0, \overline{z^0})$ with respect to S and differentiable at $(z^0, \overline{z^0})$. If g satisfies Slater's CCQ with respect to Y, then g satisfies the weak CCQ at $(z^0, \overline{z^0})$.

(iv) Let g be concave at $(z^0, \overline{z^0})$ with respect to S and differentiable at $(z^0, \overline{z^0})$. If g satisfies Slater's CCQ, or the strict CCQ with respect to Y, then g satisfies the Arrow—Hurwicz—Uzawa CCQ at $(z^0, \overline{z^0})$.

(v) Let X be convex, let int $S \neq \emptyset$, let g be concave on $X \times \overline{X}$ with respect to S and differentiable at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$. If g satisfies Karlin's CCQ with respect to Y, then g satisfies the Arrow-Hurwicz-Uzawa CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$.

(vi) If int $S \neq \emptyset$, then the weak CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ implies the Arrow – Hurwicz – Uzawa CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$.

Proof. (i) Let g satisfy the reverse CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ and let E, I, J be defined by (6). Since g is pseudo-convex at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ with respect to $H_{\mathbf{u}_k}$ for all $k \in E$, we have that $J = \emptyset$. Then System (5) becomes

 $\operatorname{Re}\langle \overline{\nabla_{\mathbf{z}} g(\mathbf{z}^0, \ \mathbf{z}^0)} \mathbf{u}_k + \nabla_{\mathbf{\bar{z}}} g(\mathbf{z}^0, \ \mathbf{z}^0) \overline{\mathbf{u}}_k, \mathbf{z} \rangle \geq 0, \ k \in I,$

which has the solution $z=0\in \mathbb{C}^n$. Hence g satisfies the Arrow-Hurwicz-Uzawa CCQ at (z^0, \overline{z}^0) .

(ii) Let $\mathfrak g$ satisfy the reverse CCQ at $(\mathbf z^0,\ \bar{\mathbf z}^0)$ and let E, I, J be defined by (6). Let $\mathbf z\in\mathbb C^n$ satisfy

$$(28) \qquad [\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \ \mathbf{z}^{0})]^{T} \mathbf{z} + [\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \ \mathbf{z}^{0})]^{T} \mathbf{\overline{z}} \in \bigcap_{k \in E} H_{\mathbf{u}_{k}}.$$

Define the function $\mathbf{b}(t) = \mathbf{z}^0 + t\mathbf{z}$, $t \in \mathbf{R}$. We have $\mathbf{b}(0) = \mathbf{z}^0$, $\frac{d}{dt}\mathbf{b}(0) = \mathbf{z}$. We will now show that there exists $\varepsilon > 0$ such that $\mathbf{b}(t) \in X$ and $\mathbf{g}[\mathbf{b}(t), \overline{\mathbf{b}(t)}] \in S$ for all $t \in [0, \varepsilon[$.

Since $\mathbf{z}^0 \in X$ and X is open there exists $\varepsilon_0 > 0$ such that

(29)
$$\mathbf{b}(t) = \mathbf{z}^0 + t\mathbf{z} \in X \text{ for all } t \in [0, \epsilon_0].$$

From (28) it follows that

$$[\nabla_{\mathbf{z}}\mathfrak{g}(\mathbf{z}^0, \, \overline{\mathbf{z}}^0)]^T[\mathbf{b}(t) - \mathbf{z}^0] + [\nabla_{\widetilde{\mathbf{z}}} \, \mathfrak{g}(\overline{\mathbf{z}}^0, \, \mathbf{z}^0)]^T[\overline{\mathbf{b}(t)} - \overline{\mathbf{z}}^0] \in \bigcap_{\mathbf{b} \in E} H_{\mathbf{u}_{\mathbf{b}}}$$

for all $t \in [0, \epsilon_0[$. Since \mathfrak{g} is pseudo-convex at $(\mathbf{z}^0, \mathbf{z}^0)$ with respect to $H_{\mathfrak{u}_k}$ for all $k \in E$, we have

$$g[b(t), \overline{b(t)}] - g(z^0, \overline{z}^0) \in H_{u_k}$$
 for all $t \in [0, \varepsilon_0[$ and $k \in E$,

hence

(30)
$$\mathbf{g}[\mathbf{b}(t), \overline{\mathbf{b}(t)}] \in \bigcap_{k \in E} H_{\mathbf{u}_k} \text{ for all } t \in [0, \epsilon_0],$$

because

$$g(\mathbf{z}^0, \ \mathbf{z}^0) \in \bigcap_{k \in E} H_{\mathbf{u}_k}.$$

Since g is differentiabe at $(z^0, \overline{z^0})$, we have

$$\mathbf{g}[\mathbf{b}(t), \overline{\mathbf{b}(t)}] = \mathbf{g}(\mathbf{z}^{0} + t\mathbf{z}, \overline{\mathbf{z}^{0}} + t\overline{\mathbf{z}}) = \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) + t\{[\nabla_{\mathbf{z}}\mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})]^{T}\mathbf{z} + [\nabla_{\mathbf{z}}\mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})]^{T}\overline{\mathbf{z}}\} + t\|\mathbf{z}\|\mathbf{a}(\mathbf{z}^{0} + t\mathbf{z}, \mathbf{z}^{0}) \text{ for all } t \in [0, \varepsilon_{0}[,$$

hence

(31)
$$\operatorname{Re} \langle \mathbf{g}[\mathbf{b}(t), \overline{\mathbf{b}(t)}], \mathbf{u}_{k} \rangle = \operatorname{Re} \langle \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}), \mathbf{u}_{k} \rangle + \\ + t \operatorname{Re} \langle [\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})]^{T} \mathbf{z} + [\nabla_{\widetilde{\mathbf{z}}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})]^{T} \overline{\mathbf{z}}, \mathbf{u}_{k} \rangle + \\ + t ||\mathbf{z}|| \operatorname{Re} \langle \mathbf{a}(\mathbf{z}^{0} + t\mathbf{z}, \mathbf{z}^{0}), \mathbf{u}_{k} \rangle, \text{ for } t \in [0, \epsilon_{0}[\text{ and } k \in \{1, \ldots, p\}]$$
 and

(32)
$$\lim_{t\to 0} \operatorname{Re} \langle \mathbf{a}(\mathbf{z}^0 + t\mathbf{z}, \mathbf{z}^0), \mathbf{u}_k \rangle = 0 \text{ for all } k \in \{1, \ldots, p\}.$$

13

If $k \in L = \{k \in \{1, ..., p\} / \text{Re} \langle g(\mathbf{z}^0, \overline{\mathbf{z}}^0), \mathbf{u}_k \rangle > 0\}$, then from (31) and (32) it follows that there exists $\varepsilon_k \in]0$, $\varepsilon_0[$ such that

(33) Re $\langle g[\mathbf{b}(t), \overline{\mathbf{b}(t)}], \mathbf{u}_k \rangle < 0$ for all $t \in [0, \epsilon_k[, k \in L]]$

If we denote by $\varepsilon = \min \{ \varepsilon_k / / k \in L \}$ we have $\varepsilon > 0$ and from (33),

(34)
$$g[\mathbf{b}(t), \overline{\mathbf{b}(t)}] \in \bigcap_{k \in L} H_{\mathfrak{u}_k} \text{ for all } t \in [0, \varepsilon[.]]$$

Since $S = (\bigcap_{k \in I} H_{\mathbf{u}_k}) \cap (\bigcap_{k \in I} H_{\mathbf{u}_k})$, from (30) and (34) we have

$$g[b(t), \overline{b(t)}] \in S \text{ for all } t \in [0, \varepsilon[,$$

and the Kuhn-Tucker CCQ at $(z^0, \overline{z^0})$ is satisfied.

(iii) Let g satisfy Slater's CCQ with respect to Y, i.e. int $S \neq \emptyset$ and there exists $\mathbf{z}^1 \in X$ such that $g(\mathbf{z}^1, \overline{\mathbf{z}}^1) \in \text{int } S$, or equivalently,

(35)
$$\mathbf{0} \neq \mathbf{v} \in S^* \Rightarrow \operatorname{Re} \langle \mathbf{g}(\mathbf{z}^1, \, \overline{\mathbf{z}}^1), \, \mathbf{v} \rangle < 0.$$

If the weak CCQ at (z^0, z^0) is not satisfied, then there exists $v^0 \in S^*$, $v^0 \neq 0$ such that

The function g being concave at $(z^0, \overline{z^0})$ with respect to S for all $v \in S^*$:

(37)
$$\operatorname{Re}\langle g(\mathbf{z}^{1}, \ \overline{\mathbf{z}^{1}}), \ \mathbf{v} \rangle \leq \operatorname{Re}\langle g(\mathbf{z}^{0}, \ \overline{\mathbf{z}^{0}}), \ \mathbf{v} \rangle + \\ + \operatorname{Re}\langle \overline{\nabla_{\mathbf{z}} g(\mathbf{z}^{0}, \ \overline{\mathbf{z}^{0}})} \mathbf{v} + \nabla_{\overline{\mathbf{z}}} g(\mathbf{z}^{0}, \ \overline{\mathbf{z}^{0}}) \overline{\mathbf{v}}, \ \mathbf{z}^{1} - \mathbf{z}^{0} \rangle.$$

By letting $\mathbf{v} = \mathbf{v}^0 \in S^*$ in (37), from (36) we get that $\operatorname{Re}\langle \mathbf{g}(\mathbf{z}^1, \bar{\mathbf{z}}^1), \mathbf{v}^0 \rangle \leq 0$, which contradicts (35) for $\mathbf{v} = \mathbf{v}^0 \neq \mathbf{0}$, $\mathbf{v}^0 \in S^*$.

(iv) By Lemma 4(ii) the strict CCQ implies Slater's CCQ. If g satisfies Slater's CCQ with respect to Y, then int $S \neq \emptyset$ and there exists $\mathbf{z}^1 \in X$ auch that $\mathbf{g}(\mathbf{z}^1, \mathbf{\bar{z}}^1) \in \operatorname{int} S$.

Consider the sets E, I, J defined in (6). Since g is differentiable at (z^0, \bar{z}^0) and concave at (z^0, \bar{z}^0) with respect to S, we have

$$0 < \operatorname{Re} \langle \mathfrak{g}(\mathbf{z}^1, \, \bar{\mathbf{z}}^1), \, \mathbf{u}_k \rangle \le \operatorname{Re} \langle \mathfrak{g}(\mathbf{z}^0, \, \bar{\mathbf{z}}^0), \, \mathbf{u}_k \rangle +$$

+ Re $\langle [\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0})]^T (\mathbf{z}^1 - \mathbf{z}^0) + [\nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0})]^T (\overline{\mathbf{z}^1} - \overline{\mathbf{z}^0}), \mathbf{u}_k \rangle$ for any $k \in \{1, \ldots, p\}$, and hence

$$0 < \operatorname{Re} \langle \overline{\nabla_{\mathbf{z}} \mathbf{u}(\mathbf{z}^0, \overline{\mathbf{z}^0})} \mathbf{u}_k + \nabla_{\overline{\mathbf{z}}} \mathbf{u}(\mathbf{z}^0, \overline{\mathbf{z}^0}) \overline{\mathbf{u}}_k, \ \mathbf{z}^1 - \mathbf{z}^0 \rangle \text{ for any } k \in E.$$

System (5) has the solution $z=z^1-z^0$ and the Arrow-Hurwicz-Uzawa CCQ at (z^0, \overline{z}^0) is satisfied.

(v) Apply Lemma 4 (iii) and Lemma 5 (iv).

(vi) Let g satisfy the weak CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$, i.e. let (27) hold. If the Arrow—Hurwicz—Uzawa CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ is not satisfied then System (25) has no solution $\mathbf{z} \in \mathbb{C}^n$ (E, I and J are again the sets defined in (6)). By Lemma 2, there exists $\mu = (\mu_k)_{k \in E} \geqslant 0$ such that

(38) Re
$$[\nabla_z g(z^0, \overline{z^0})v + \nabla_{\overline{z}} g(z^0, \overline{z^0})\overline{v}]^H z \leq 0$$
 for all $z \in \mathbb{C}^n$, where

$$\mathbf{v} = \sum_{k=1}^{p} \lambda_k \mathbf{u}_k \text{ and } \lambda_k = \begin{cases} \mu_k, & \text{if } k \in E \\ 0, & \text{if } k \in \{1, \dots, p\} \setminus E. \end{cases}$$

From (38) we have an adversarial and the standard of the stand

(39)
$$\nabla_{\mathbf{z}} g(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \mathbf{v} + \nabla_{\mathbf{z}} g(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \mathbf{v} = \mathbf{0}.$$

Evidently,

(40)
$$\mathbf{v} \in S^* \text{ and } \operatorname{Re} \langle \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0}), \mathbf{v} \rangle = 0.$$

If $\mathbf{v} = \mathbf{0}$, then the system 1)

$$\sum_{k\in E}\mu_k\mathbf{u}_k=\mathbf{0}, \quad (\mu_k)_{k\in E}\geqslant \mathbf{0},$$

has a solution, and by Lemma 1, the system

$$\operatorname{Re}\langle \mathbf{u}_k, \mathbf{w} \rangle > 0, \ k \in E,$$

has no solution $\mathbf{w} \in C^n$, which contradicts int $S \neq \emptyset$. Consequently $\mathbf{v} \neq 0$, but this together with (39) and (40) contradicts the fact that g satisfies the weak CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}}^0)$.

THEOREM 3. Let X ge an open set in C^n , let $S = \bigcap_{k=1}^p H_{\mathbf{u}_k}$ be a polyhedral cone in C^m , let A, $B \in C^{m \times n}$ and $b \in C^m$, and let

$$g(\mathbf{z}, \mathbf{w}) = \mathbf{A}\mathbf{z} + \mathbf{B}\mathbf{w} + \mathbf{b} \text{ for all } (\mathbf{z}, \mathbf{w}) \in X \times \overline{X}.$$

If $Y = \{\mathbf{z} \in X | \mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}) \in S\}$ is nonempty, then \mathbf{g} satisfies the reverse concave CCQ at any $(\mathbf{z}^0, \overline{\mathbf{z}}^0) \in Y \times \overline{Y}$.

Proof. Let $\mathbf{z}^0 \in Y$. Evidently the function \mathbf{g} is differentiable at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ and $\nabla_{\mathbf{z}}\mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0}) = \mathbf{A}^T$, $\nabla_{\overline{\mathbf{z}}}\mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}^0}) = B^T$. The function \mathbf{g} being pseudoconcave at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ with respect to $H_{\mathbf{u}_k}$ for all $k \in \{1, \ldots, p\}$, it follows that the function \mathbf{g} satisfies the reverse concave CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$.

COROLLARY 2. Let X, S, g and Y be as in Theorem 3. Then the function g satisfies:

a) the Arrow-Hurwicz-Uzawa CCQ at any $(\mathbf{z}^0, \overline{\mathbf{z}}^0) \in Y \times \overline{Y}$, and

b) the Kuhn-Tucker CCQ at any $(\mathbf{z}^0, \overline{\mathbf{z}^0}) \in Y \times \overline{Y}$,

Proof. In view of Theorem 3, the function g satisfies the reverse concave CCQ at any $(\mathbf{z}^0, \overline{\mathbf{z}}^0) \in Y \times \overline{Y}$. Now by applying Lemma 5 (i) and (ii), the corollary follows.

4. A Kuhn-Tucker Theorem in Complex Space

THEOREM 4. Let X be a nonempty open set in C^n , let $S = \bigcap_{k=1}^{\rho} H_{\mathbf{u}_k}$ be a polyhedral cone in C^m with nonempty interior, let $f: X \times \overline{X} \to C$ and $\mathbf{g}: X \times \overline{X} \to C^m$, let $Y = \{\mathbf{z} \in X | \mathbf{g}(\mathbf{z}, \overline{\mathbf{z}}) \in S\}$, let $\mathbf{z}^0 \in Y$ be a local minimum point of Problem (P), let f and \mathbf{g} be differentiable functions at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$ and let E be the set defined by (6).

Suppose in addition that one of following conditions holds:

(i) g satisfies the Arrow-Hurwicz-Uzawa CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}^0})$;

(ii) g satisfies the Kuhn-Tucker CCQ at (z0, z0);

(iii) g satisfies the reverse concave CCQ at (z^0, \overline{z}^0) ;

(iv) g satisfies the weak CCQ at (z^0, \overline{z}^0) ;

(v) g satisfies Slater's CCQ with respect to Y and g is concave at $(z^0, \overline{z^0})$ with respect to S;

(vi) g satisfies the strict CCQ with respect to Y and g is concave at $(\mathbf{z}^0, \overline{\mathbf{z}}^0)$ with respect to S;

(vii) \mathbf{g} satisfies Karlin's CCQ with respect to Y, X is convex and \mathbf{g} is concave on $X \times \overline{X}$ with respect to S.

Then there exists $\mathbf{v} \in \left(\bigcap_{k \in E} H_{\mathbf{u}_k}\right)^* \subseteq S^*$ such that

$$(41) \quad \overline{\nabla_{\mathbf{z}} f(\mathbf{z}^0, \overline{\mathbf{z}^0})} + \nabla_{\overline{\mathbf{z}}} f(\mathbf{z}^0, \overline{\mathbf{z}^0}) - \overline{\nabla_{\mathbf{z}} g(\mathbf{z}^0, \overline{\mathbf{z}^0})} - \nabla_{\overline{\mathbf{z}}} g(\mathbf{z}^0, \overline{\mathbf{z}^0}) \overline{\mathbf{v}} = \mathbf{0}$$

(42)
$$\operatorname{Re}\langle \mathbf{g}(\mathbf{z}^0, \overline{\mathbf{z}}^0), \mathbf{v} \rangle = 0.$$

Proof. Let $\mathbf{z}^0 \in Y$ be a local minimum point of Problem (P) and let E, I and J be the sets defined by (6).

In view of Lemma 5 we need to establish the theorem under the assumptions (i) and (ii).

NECESSARY OPTIMALITY CRITERIA IN NONLINEAR PROGRAMMING

(i) By Theorem 2 there exists a $\tau \in \mathbf{R}_+$ and $\mathbf{u} \in \left(\bigcap_{k \in E} H_{\mathbf{u}_k}\right)^* \subseteq S^*$ such that (I), (II) and (III) hold. We will show that J is empty. Then by Corollary 1 we have $\tau \neq 0$.

Assume J is nonempty. We will now show by contradiction that $\tau \neq 0$. Suppose that $\tau = 0$, then from (Ia) it follows that $\mathbf{u}_J \neq 0$, and hence

$$(43) (\lambda_k)_{k \in J} \geqslant 0.$$

Since g satisfies the Arrow-Hurwicz-Uzawa CCQ at $(z^0, \overline{z^0})$, there exists a $z \in \mathbb{C}^n$ such that

44)
$$\begin{cases} \operatorname{Re}\langle \overline{\bigtriangledown_{\mathbf{z}} \mathfrak{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})} \mathbf{u}_{k} + \nabla_{\overline{\mathbf{z}}} \mathfrak{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{u}}_{k}, \mathbf{z} \rangle > 0, \ k \in J \\ \operatorname{Re}\langle \overline{\bigtriangledown_{\mathbf{z}} \mathfrak{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})} \mathbf{u}_{k} + \nabla_{\overline{\mathbf{z}}} \mathfrak{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{u}}_{k}, \mathbf{z} \rangle \ge 0, \ k \in I. \end{cases}$$

From (I), (43) and (44) we have

$$\operatorname{Re}\langle \overline{\nabla}_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \mathbf{u} + \nabla_{\overline{\mathbf{z}}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{u}}, \mathbf{z} \rangle =$$

$$= \operatorname{Re}\left[\sum_{k \in E} \overline{\lambda_{k}} \langle \nabla_{\mathbf{z}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \mathbf{u}_{k} + \nabla_{\overline{\mathbf{z}}} \mathbf{g}(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{u}}_{k}, \mathbf{z} \rangle\right] > 0,$$

which contradicts (II) for $\tau = 0$. Consequently $J = \emptyset$. Then by Corollary 1, it follows that $\tau > 0$. Dividing (II) and (III) by $\tau > 0$ and setting $\mathbf{v} = (1/\tau)\mathbf{u} \in \left(\bigcap_{k \in \mathbb{R}} H_{\mathbf{u}_k}\right)^* \subseteq S^*$, we get that (41) and (42).

(ii) Let $\mathbf{z} \in \mathbb{C}^n$ suct that (26) holds. Since \mathfrak{g} satisfies the Kuhn—Tucker CCQ at $(\mathbf{z}^0, \overline{\mathbf{z}}^0)$, there exists an $\varepsilon > 0$ and a function $\mathbf{b} : [0, \varepsilon[\to C'']]$ differentiable at 0, such that

(45)
$$\mathbf{b}(0) = \mathbf{z}^0, \qquad \frac{d}{dt} \mathbf{b}(0) = \mathbf{z}$$

and $\mathbf{b}(t) \in X$, $\mathbf{g}[\mathbf{b}(t), \overline{\mathbf{b}(t)}] \in S$ for all $t \in [0, \epsilon[$.

Since zo is a local minimum of Problem (P) we have

$$\frac{d}{dt} \operatorname{Re} \left\{ f[\mathbf{b}(t), \ \overline{\mathbf{b}(t)}] \right\} |_{t=0} \geqslant 0,$$

or equivalently,

(46)
$$\operatorname{Re}\left\{\frac{d}{dt} f[\mathbf{b}(t), \overline{\mathbf{b}(t)}]\right\}\Big|_{t=0} \geq 0.$$

From (45) and (46) it follows that

$$\operatorname{Re}\left\{\left[igtriangledown_{\mathbf{z}}f(\mathbf{z^0},\ ar{\mathbf{z^0}})\right]^T\!\mathbf{z}+\left[igtriangledown_{\mathbf{z}}f(\mathbf{z^0},\ ar{\mathbf{z^0}})\right]^T\!ar{\mathbf{z}}
ight\}\geqslant 0.$$

Therefore the system

$$\begin{cases} \operatorname{Re} \langle \overline{\nabla_{\mathbf{z}} f(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})} + \nabla_{\overline{\mathbf{z}}} f(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}), \ \mathbf{z} \rangle < 0, \\ \operatorname{Re} \langle \overline{\nabla_{\mathbf{z}} g(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}})} \mathbf{u}_{k} + \nabla_{\overline{\mathbf{z}}} g(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{u}}_{k}, \mathbf{z} \rangle \geqslant 0, \quad k \in E, \end{cases}$$

has no solution $z \in \mathbb{C}^n$. Then by Lemma 1 the system

(47)
$$\tau \left[\overline{\nabla_{\mathbf{z}} f(\mathbf{z}^{0}, \ \overline{\mathbf{z}^{0}})} + \nabla_{\mathbf{z}} f(\mathbf{z}^{0}, \ \overline{\mathbf{z}^{0}}) \right] - \\ - \sum_{k \in E} \mu_{k} \left[\overline{\nabla_{\mathbf{z}} g(\mathbf{z}^{0}, \ \overline{\mathbf{z}^{0}})} \mathbf{u}_{k} + \nabla_{\mathbf{z}} g(\mathbf{z}^{0}, \overline{\mathbf{z}^{0}}) \overline{\mathbf{u}}_{k} \right] = 0,$$

has a solution $(\tau, \mu_E) \geqslant 0$ with $\tau \geqslant 0$, where $\mu_E = (\mu_k)_{k \in E}$. Since $\tau \geqslant 0$ is equivalent to $\tau > 0$, from (47) it follows that

$$\overline{\nabla_{\mathbf{z}} f(\mathbf{z}^0, \ \overline{\mathbf{z}}^0)} + \nabla_{\overline{\mathbf{z}}} f(\mathbf{z}^0, \ \overline{\mathbf{z}}^0) - \overline{\nabla_{\mathbf{z}} g(\mathbf{z}^0, \ \overline{\mathbf{z}}^0)} \mathbf{v} - \nabla_{\overline{\mathbf{z}}} \mathbf{y}(\mathbf{z}^0, \ \overline{\mathbf{z}}_0) \overline{\mathbf{v}} = \mathbf{0},$$

where $\mathbf{v} = \sum_{k=1}^{\infty} \frac{\mu_k}{\tau} \mathbf{u}_k$.

Let us denote by

$$\lambda_k = \begin{cases} \mu_k/\tau, & k \in E \\ 0, & k \in \{1, \dots, p\}/E. \end{cases}$$

Then $\mathbf{v} = \sum_{k=1}^p \lambda_k \mathbf{u}_k$ and $\mathbf{v} \in \left(\bigcap_{k \in E} H_{\mathbf{u}_k}\right)^* \subseteq S^*$. Moreover $\operatorname{Re} \langle g(\mathbf{z}^0, \overline{\mathbf{z}}^0), \mathbf{v} \rangle = 0$.

REFERENCES and hith a X, at bith, lift on a for all t = 0.

[1] Abrams, Robert A. and Ben-Israel, A., Nonlinear Programming in Complex Space: Necessary Conditions. SIAM J. Control, 9, 606-620 (1971).

[2] Abrams Robert A., Nonlinear Programming in Complex Space: Sufficient Conditions

and Duality. J. Math. Anal. Appl., 38, 619-632 (1972)
[3] Ben-Israel, A., Linear Equations and Inequalities on Finite Dimensional, Real or Complex Space: a Unified Theory. J. Math. Anal. Appl., 27, 367-389 (1969).

[4] Craven, B. D. and Mond, B., A Fritz John Theorem in Complex Space. Bull. Austral. Math. Soc., 8, 215-220 (1973).

[5] Craven, B. D. and Mond, B., Real and Complex Fritz John Theorems. J. Math. Anal. Appl., 44, 773-778 (1973).

[6] Duca, Dorel I., Constraint Qualifications in Nonlinear Programming in Complex Space. Studia Univ. Babes-Bolyai, Mathematica, 23, 61-65 (1978).

[7] Duca, Dorel I., Saddlepoint Optimality Criteria of Nonlinear Programming in Complex Space without Differentiability. Studia Univ. Babes-Bolyai, Mathematica,

[8] Mangasarian, O. L., Nonlinear Programming. McGraw-Hill Book Co., New York,

Received, 28. IV. 1980

17

Universitatea "Babes-Bolyai" Facultatea de matematică Str. Kogălniceanu nr. 1 3400 Cluj-Napoca, România