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In this paper we consider the problem
(P)  Minimize Re f(z,7) subject to z = X, gz, z) < S,

where X 1s a nonempty open set in C*, S is a polyhedral cone i C*, f: X x
XA - Candg: X Xx X - @

The paper is devided into four sections. In Section 1 notation is
introduced and some preliminary results are given. In Section 2 we esta-
blish a necessary condition of the Fritz John type for Problem (P). In
Section 3 seven kinds of complex constraint qualification (CCQ) are given
and relations between them are established. In Section 4 we prove a
Kuhn-Tucker type necessary condition for Problem (P).

1. Notation and Preliminary Results

Let * (R*) denote the »-dimensional complex (real) vector space with
Hermitian (Euclidean) norm |[«]], R} = {x/x = (¥;) € B*, %; 20, j =
=1, ..., n} the non-negative orthant of R*, and C€"*» the set of m X »
complex matrices.

If A is a matrix or vector, then AT, A, A¥ denote its transpose, com-
plex conjugate and conjugate transpose respectively. For z = (7;), w = ()
e ("; (z, w) = w¥z denotes the inner product of z and w and Re z =
= (Re z;) = " denotes the real part of z.
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If x = (%), ¥y = (v;) € R*, we consider
X 2 y(x<y) iff x5 £ yi(%; <yy) for any j = {1, ..., #u},
X<y iiff x=yand x #y.
If XsC then X={z<s(z<X} and X ={z « "/—z = X}.

n

The nonempty set S in ”* is a polyhedral cone if it is an intersection.

of closed half-spaces in (”, each containing 0 in its boundary [3], i.e
p
(1) “3S'="N H,,k, where H, = = ("Re <v, u,> 20}, k=1,
=1
The polar S* of the nonempty set S in €” is defined by
S¥={u € (/v € S = Re <u, vy 2 0}.
P
If S=N H,, is a polyhedral cone (1), then
r=1
intS=4{vel/Re<lv,u,>)>0 k=1, ..., p}
or equivalently,
int S ={ve0 +uesS*= Relv, udp > 0},
and int S = @ iff S* N (—S*) = {0}, [6].

A nonempty set S in € is a closed convex cone iff (S*)* -= S [37.

Let X be an open set in €* and let 2° € X. A function ¢ = (g,(wl,.

w?): X X X - € is differentiable at (20 20) € X x X if for all z X :

(2) g(Z, Z) = g(z“, 20) ‘I‘ [Vz!](z": E(])]:r(z N ZO) +
+ [Vig(z% 2917 @ — 2% + ||z — z°||a(z, z?),
where
0 70 — & 70 0 "X p
V’:g(z 5 Z ) . ( 1 (L b z ))1gkg/, = C ;
awi 1=j=n
. S0\ i 8g . i~y "
vzg(ZO, LO) i 8w% (LO’ LO))iékéf = xﬁ,
and
(3) lim a(z, z° == 0

DEVINITION 1. Let X be a wonempty set in C*, lot z° € X, and
let S be a closed convex cone in €. The function ¢: X x X —» C" is said
to be

5 NECESSARY OPTIMALITY CRITERIA IN NONLINEAR PROGRAMMING 165

a) convex at (2% 79 with respect to S if

X
7\

K { (e 7) 4 (1 — N0, 29) —g(z +

o fazeX| A+ =Nz (1 Nz =S

<
A M

(4)

v ||/\

i

—

If in addition X s open and g is differentiable at (z°, z%), then from
{(4) it follows that

gl 7) — 4o 70 — (V@52 1z — 2) —
— [Vig(z®, 2°) "z — 2% < S
for cach z « X,

b) pseudo-convex at (2° z°) with respect to S if X is open, ¢ is diffe-
ventiable al (2, 2% and for any 7z < X

(5) [Vag(el 2°%) Mz — 2°) + [Vigy(z® 2°) ]z —2°) = S =

= gz, z) — g(=° z°) = S.

¢) concave (pseudo-concave) at (z° z°) with respect to S if § 1s convex
(pseudo-convex) at (z° z°) with respect to —S.

d) comvex (pseudo-convex, concave, pseudo-concave) on X X X with
respect to S of X 1s convex and ¢ 1s convex (pseudo-convex concave, pseudo-
concave) at any (z, z) © X X X with vespect to S.

¢) with convex (pseudo-convex) real part at (z° z°) with respect to a
closed convex cone T in R™ if ¢ is comvex (pseudo-convex), at (z° z°) with
respect to the closed convex cone CT = {v € ("|Re v & T} < C"

£) with comvex (pseudo-convex) real part on X X X with respect to

a closed comvex come T in R™ if X is convex and ¢ is with convex (pseudo-
convex) rveal part al any (z, z) € X X X with respect to T.

rEMMA 1. Let A & Coxn) B e Coxr gnd D e 3¢ be given matrices,
with A being nonvacuous. Then cxacily one of the following two systems has
a solution . :

Re (Az) >0, Re (Bz) 20, Dz =06, z = (7,

Afu 4+ Bv 4+ Diw =0, u e B2, v = R4 w = (7,
=0, v 0.

The proof is given in [7].
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LEMMA 2. Lt X be g nonempty convex set in o, let i X X i ¢
k=1, 2, 3»,.b6 veckor functions having comvex real part on X x X z:"/z’*h
respect to I{+k k=12 3 and let h-(C2 _ C? be a linear vector
If the system :
Re Bz, 2) <0, Re fy(z, z) < 0, Re f,(z, 7) <0, h(
solution z = X, then there exist Wk < R”»

Suncizon,
7, 7) = 0, has uo
» R=1,2, 3, and p < C? such that

(AL, 22, ) # 0

and

3
Re (E Uy, z), 24 + iz, 7), u>| 2 0,
Jor all 7z = X.
The proof is given in i7].

»

5 2% ey G - =

LEMMA 3. Let S = (\ Hy, be a polvhedral cone in C et o= {1 P}
n ] ey

be fixed, and let X be a nonempty convex sel in C*. If ¢: X x X - C s

concave on X X X with respecl o S, then # A i
g i O S ke w  function h,: X x -
defined by the formula / & XX -G

In(2s W) = —<g(z, W), w,> for all (z, w) X x X,
has convex real part on X x X with respect to R,.

The proof is given in (7).

2. A Fritz John Theorem in Complex Space

; THEOREM 1. Let X be a {nonempty open set s C* and let z° « X
et fr X XX 5 Candg: X x X - € be differentiable functions at (2% z9)

b4 E
let S = (" Hy, be a polvhedral conc in C* and let
k=1

r

E={ke{l, ..., p} /Re gz 2% u,> = 0%.
6) 1= = F g is pse convesx 7% wi
(6) {# € E g is pseudo-convex at (z°, 2% with respect to Ha,t

J=E~N L L=, .. p~E
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If 20 4s a local minimum point of Problem (P), then the system

7) Re [V/of (28 2) + Vif (20 2% 7z < 0,
(8) Re [V a4(z° 7_‘0_)'“k + V(2% 20,z >0, k< ],
9) Re [V (2%, z%u, + Vag(e!, 2wz 2 0, k<1,

has no solutton z = (7.

Proof. Let z° be a local minimum point of Problem (P), i.e. there exists
§ > 0 such that if

~

(10) B %) =z =€ |z—12 = 8
and
Y =—dzeX ¢gzz) =S}
then
(11)  Re f(z, #) = Ref(z%z0) for all z = B(z®; 8§ N Y.

We shal show that if z satisfies the system. (7) — (9), then a contra-
diction arises. Iet z be a solution of the system (7)—(9). Then, since X is

open and z9 € X, there exists a & > 0 such that
(12) 294+ 3z e X for all 0 £ 5 < §.

Since f and ¢ are differentiable at (2% z°) from (2) we have that for
all 8§ €30, §]

(13) [z + 8z, 2° | 82) = f(2° 2°) + S{[V4f (2 2°) 7z +

+ [Vaf (2% 29172} + 3]z |ay(2° + 3z, z°)

and

(14) g(z° + 3z, 2° + 3z) = g(z% 2°) + 3{[Vuy(z® 2°) 1"z +
+ Vg’ 29|72} + 3|zl a(® + 3z, 29,

where

(15) Hm ag(2° + 3%, 2% =0 and lim a(z® + 98z, z° = 0.

80 30
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From (14) and (15) it follows that
(16) Redqg(zy + 52, 2° -+ 37), w,) = Relg(z z°), u,> +
+ Re ([Vag(z®, 20) 7z + [Viag(2® 2971z, ) +
+ 3|z]|| Re <a(z® + 3z, z°), u,»
for all k & {1, ..., p} and 5 = 10, &7,
and

(17) lim (Re <a(z® 4+ 3z, zv), u,> =0 for all k = {1, ..., p}.

§—+0
(i) Let k = J. Then from (16), (17) and (8) we deduce that there
exists 8, € 10, §[ stich that

Re (g(z°® + 3z, 70 + 8z), u,> = Re {y(z°, z%, u,) for all & € 10, 3,[.
Since Re {g(z° z%, u,> =0, & = J< E, it follows that
(18) g(z® + 5z, 2° + 8z) < H, for all § = 10, §,[, k< J.

(i) Let & = I. Since g is pseudo-convex at (z°, z% with' respect to
Hy,, ks I, from (5) and (9) we infer that

Re <z + 3z, 2° + 8z) — g(z%, z°), w,> = 0, for all 3 = ]0,3[
and hence
(19)  g(z0 + 8z, 20 4 82) = H,, for all 3 = 10, 3 and & e I.

(ifi) Let & = L. Then, from (16) and (17), it follows that there exists
5, = 10, S[ such that Re {g(z® - 3z 20 + 3z), u,> = 0 for § =0, §[,
and hencce

(20) g(z° + 8z, z° + dz)  H, for § =10, §,(, k < L.

(iv) From (13), (15) and (7) we deduce that there exists 3, € 10,:8(
such that
(21)  Re f(z® + 3z, z° + 3z) < Re f(z% 29, for all 3 =10, 3.

Let 7 be the minimum of all positive numbers g}, 3, 8, o "(]i sI'UL).
Then, from (10), (12), (18)—(21) we have z° 4 3z = B(z°; 3} Y and
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Re f(z° + 8z, z° + 8z) < Re f(z°, z% for all § 10, #[, which contra-
dicts (11). Hence the system (7)—(9) has no solution z in C.
THEOREM 2. Let X be a nomnempty open set in C*, let 70 € X, let

? i
S=0N H.,k be a polyhedral cone tn C" with nonempty interior, let /1 X x X — €
k=1

and §: XXX € be differentiable functions al (2% 2% and let E, I and
J be defined by (6).
If z° is a local minimum point of Problem (P), then there exist v = R,
%
and u < (ﬂ H.,k) < S* such that:

kel
(X) there exists x = (n,) = QY with :

2
a) w/ LT,
k=1
b) 2, =0 for any k € {1, ..., p}"_E.
¢) if uy = Y 2u, then (tr, uy) # 0,

ke
(II) T;zf(zoa 7:0) -+ TVZf(ZOs 20) — VZQ(ZOD 20)“ = Vig(z(), ZO)E =0,
(I11) Re {g(a®, 2%, up = 0.

Proof. In view of Theorem 1, System (7)—(9) has no solution z = (",
Then, by Lemma 1 the system

(22) T [V Af (20 29) + 2/ (a0, 29)] —
_121‘ e [N/ 29 (2°, Z_O)“k + Vg2’ Z_O)u_/t»,;i =0
has a solution (v, pg) > 0 with
(23) I (v, py) 20 and  p, 20,
where pp = (p)ier by = (Wiey and p; = ()rer.
Define
! b
(24) u =y, MU, Uty = Au, and u = >0 A,
kel ke J k=1
where
\ _J[Lk, ifrek
FUlo iR e, L., pNE
2 - L’analyse numérique et la théorie de 1'approximation — Tome 9, No. 2. 1980.
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We have that u = ,gﬂEH,,k)* € 5% and from (22) and (24) follows (Ia),

{Ib), (II) and (ITIT). It remained to show that (t, uz) # 0.
(i) If = #0, we have that (r, uy) # 0.

(i) If v = 0, from (23) it follows that tr = 0. If u; =0, the system
uJ:’;}pkuk =0, p, >0 has a solution. By Lemma 1, the system
Re<w, w,» > 0, & « ] has no solution w = C™, which contradicts int S =
# . Consequently u # 0, hence (v, uy) # 0.

. COROLLARY 1. If the conditions of Theorem 2 are Julfilled and ] =
then ©~ £ 0. 7

3. Seven Kinds of Complex Constraint Qualification

DEFINITION 2. Let X be a nonempty set in C* and let S be a closed
convex cone 1n (.

The function g : X X X — C" which defines the set Y — {z 7
1s said to satisfy g ofinesthe setY = {z< X[g(z, %) =S},

_1°.. Slater's complex constraint qualification (CCQ) with respect to Y
[6] if int' S £ O and there exists 22 = X such that g(z}, 71) = int S.

2 o. tke st? $Ct CCQ L(’/ziﬂ res bect tO } (3 7/f 1’11': S 7£ @ a%d tﬂﬁ’ (4 X Sf
wo 01neLs 0, 41 0 41 5 T €4 1’"’

glz(0), 20)] — (1 — N)g(z®, 729 — rg(zt, 7) < int S,
3°. Karlin's CCQ with respect to Y if ¢ ; * oy
Py Q D 0 tf there exists mo v € S* v £ ¢

Re {((z, z), v> <0 Jor all 7 € X.

»
LEMMA 4. Let X be a nonemply sct in C*, let S = M Hu, be a polvhe-
H 4
1

aral cone in C" let q: X X X - C*, and let Y — {;:E X/ y(z, z) = S}

(i) If g satisfies Slater's CCQ with respect to Y, th Sf1 i’
00Q with Seap s 3 Q pect to Y, then g satisfies Karlin's

(i) If g satisfies the strict CCQ with respect to Y. th Sfi s
CCQ with respect to V. * AR Hpee T s Slaggty

(iii) If in addition X is convex, int S # & and q is concave on X xX
. g ) x X
with vespect to S, then Karlin’s CCQ and Slater's CCQ gre equivalent.

Proof. (i) Let g satisfy Slater’s CCQ. Then int S # @ and there exists
z! € X such that g(z!, ') € int S. Now, if v  S* and v # 0, it follows
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that Re (g(z!, z!), v)> > 0, and hence there exists no v & S* v # 0 such

that Redg(z, z), vy = 0 for all z € X.
(i) If the strict CCQ with respect to Y is satisfied, then int S # &
and there exist two points 29 z' €Y, z° # z! and A = ]0, 1[ such that

z(A) = (1 — 2)z® + a2zt € X and Re (g[z(2), z(A)] — (1 — %) g(z% z°) ~
— Ag(zh Zl), v > 0 for all v S* v #£0. Since z!, z' €Y, we have
Re (g[z(»), z(\)], v) > 0 for all v € §* v 3 0, hence the point z=
— z()) € X has the property that g(z, z) € int S.

(iii) Let g satisfy Karlin’s CCQ with respect to Y. If ¢ does not satisfy
Slater’s CCQ, then the system

—Re (g(z, z), n,> <0, k= {1, ..., p},

has no solution z € X. Then, by Iemmas 3 and 2, there exists » = (3,) €

e R?, % > 0 such that —Re <g(z, z), v) 2 0 for all z € X, where v =

! b
= > au,. Obviously, v e S% If v=0, the system 2 M, =0, % = (3) > 0
1 e

has a solution, hence by Iemma 1, the system Re<w,u,> >0, £ =1,...,p
has no solution w = €*, which contradicts int S # . Consequently v # 0.

Hence, there cxists v € S*, v # 0 such that Re (g(z, z), v> = 0 for all
z € X, but this contradicts the fact that g satisfies Karlin’s CCQ. From
this and (i) it follows that Slater’'s CCQ and Karlin’s CQQ are equivalent.
?
DEVPINITION 3. Let X be an open set in €, let S = (\ Hy, bc a poly-
k=1
hedral cone in C* )
The function g : X X X — C" which defines the sct Y = {z. < X[g(z, z) =5},
18 sard to satisfy .
1°. the Arrow— Hurwicz—Uzawa CCQ at (2% z° €Y X Y if ¢ is
differentiable at (2% z°) and if
o5 RedS/4g(2°% zou, + Vg (2% z%u, 2> >0, k = ]
l e — —
Red (2% z0u, + /39(z° 2°)uy, 2> 2 0, kel

has a solution z € C*, where I and J are the sets defined by (6).
2°. the reverse concave CCQ at (2% z%) €Y X Y if g 1s differentiable
at (z° 2°) and pseudo-convexe at (z°, z°) with respect to H,, for all k € E

(E is the set defined by (6)).
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3°. the Kuhn— Tucker CCQ at (z°, ) €Y xV (1] if g is differentia-
ble at (z°% z° and for all z = C* with

(26) [Va(a 29172+ [Vaglet, 29)Z < ()

there exists an ¢ € R, ¢ > 0 and a function h: [0, e[ - ¢ differentiable
at 0, such that bh(0) = z9, ;it h(0) =z, and b(t) = X, g[b@), h(#)] = S for

0 =¢t<e.
4°. the wear COQ at (2% 2°) = Y X Y [6] if g is differsutiable at (z° z%)

and
V(2% 20V 4 \ag(20 20V = O
627) RC<g(Z0, EO)’ V> = {) @mj)l); v = (),

Ve SF ;
P
LEMMA 5. Let X be an open set in €, let S = N H"k be a polvhedral
k=1

some wm @, let g: X X X > C" and let 20 € YV — {z & X|y(z, z) = S}.

(i) If g satisfies the reverse concave CCQ at (z°, z%, then g satisfics the
Arrow—Hurwicz~ Uzawa CCQ al (2°, 9.

(i) If g satisfies the reverse concave CCQ at (2% z%), then g satisfies the
Kuln—Tucker CCQ at (2% z°).

(iti) Let ¢ be concave at (z° z° with respect to S and differentiable at
(20 2°). If g satisfies Slater’s CCQ with vespect to Y, then 4y salisfies the weak
CCQ at (20, z9).

(iv) Let g be concave at (z°, z°) with respect to S and differentiable at
(29, 2°). If g satisfies Slater’s CCQ, or the strict CCQ with respect to Y, then
y satisfies the Avrow—Hurwicz— Uzawa CCQ at (z°, z9).

(v) Let X be convex, let int S # O, let g be concave on X X X with
vespect to S and differentiable at (z°, z°). If g satisfies Karlin’s CCQ with
respect to Y, then g satisfies the Arrow —Hurwici— Uzawa CCQ at (z° z°).

(vi) If int S @, then the weak CCQ at (2% ) implies the Arrow—
Hurwicz—Uzawa CCQ at (29, z°).

Proof. (i) Let g satisly the reverse CCQ at (z°% z9 and let E, I, |
be defined by (6). Since g is pseudo-convex at (z° z° with respect to
H,, ior all & € E, we have that J'= J. Then System (5) becomes

Red744(2% z%u, + Vig(z' 2%, z> 2 0, & < I,
which has the solution z = 0 = (*, Hence g satisfies the Arrow —Hurwicz —
Uzawa CCQ at (z° z9).
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(ii) Let g satisfy the reverse CCQ at (29, z° and let E, I, J be defined
by (6). Let z = € satisfy
(28) [z, 29177 + [Vig(es, 29) % < (\ H,

kel
Define the function h()) = z° + 1z, + = R. We have b(0) = z9, % b(0) =
= z. We will now show that there exists e > 0 such that b(f) € X and

g[b(t), B(H)] = S for all ¢ = [0, .
Since z° € X and X is open there exists gy > 0 such that

(29) h(f) = 2° 4- tz € X for all.¢ = [0, g |-
From (28) it follows that

[Vayas aTT 0 — 0] + [Vi g6 291700 - 2] < ) o,
for all £ € [0, ¢, [. Since g is pseudo-convex at (z°, 2% with respect to
H,,k for all 2 = E, we have

gib(), ()] — g(zo z°) = H, for all t € [0, ¢,[ and k = E

hence

(30) gh®), b =N H,, for all t € [0, ¢],
kel

because

g(z% 29 = N H, .

ke E

Since ¢ is differentiabe at (2, z%, we have

gIbE), b)) = 92" + 1z, 2° + iz) = ¢(z*, 2%) + H{[</ (2%, 2]z |
+ [V (29 29172} - L]z || a(z° + fz, 2% for all ¢ = [0, &,

hence

(31) Re <g[b(@), b)), w) = Re (g(z° z°), u,> +
+ L Re ([Vag(2, 29172 + [7ig(z%. 70 1% u,) -+
+ 2zl Re Ca(z® + iz, 29, u,)>, for L € [0, ¢, [ and k& = {1, ..., $}
and

(32) lim Re (a2’ + 7z, 2%, uy = 0 for all & {1, ... p.
1—0
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¥ khkel=1{ke{l. . p}/ Relg(z z%, u,> > 0}, then from (31)
and (32) it follows that there exists ¢, €]0, g such that
(33) Re <g[h(t), b1, u,> <0 for all ¢ = [0, g, k= L.

If we denote by ¢ = min {g, /" |k € L} we have ¢ > 0 and from (33),

(34) g[b(), b €N Hy, for all ¢t € [0, <[.

kel

Since S = (N Hy) N (N H“k), from (30) and (34) we have

kel kel
gb(t), b(#)] = S for all ¢ = [0, ¢,
and the Kuhn-Tucker CCQ at (z° z°) is satisfied.
(iii) Let g satisfy Slater’s CCQ with respect to Y, ie int S # 0
and there exists z1e X such that g(z!, z') < int S, or equivalently,

(35) 0 #v = S* = Re {g(z', #), v) <O.

If the weak CCQ at (z° z°) is not satisfied, then there exists v° &
e S*, v® # 0 such that

V(20 20V 4 g2 29)v0 = 0

(36) =
Re {g(z°% z°), v°) = 0.

The function ¢ being concave at (z° 7%) with respect to S for all
v e S*:

(37) Redg(zl, z), v) < Re (y(z%, z°), v> +

+ Re <\7L9(Z09 i‘))‘r + vig(zoﬁ ZO)VS Zl — Z0>'

By letting v=v"< S$* in (37), from (36) we get that Redg(z', Z!),v") =0,
which contradicts (35) for v=v° #0, v* = S5*,

(iv) By Lemma 4 (ii) the strict CCQ implies Slater’s CCQ. If g satis-
fies Slater’s CCQ with respect to Y, then int S # @ and there exists
2! e X auch that g(z!, z!) = int S. :

Consider the sets E, I, J defined in (6). Since g is differentiable at
(z% z°) and concave at.(z i") with respect to S, we have

0 < Re (g(z', Zl)a u,> = Re (gy(z’ io)’ u,> +

+ Re [z 20)]7(@ — 2°) + [Tz’ 20 /(@ — %), >
for any k& = {1, ..., p}, and hence

0 < Re (5;g(z°, 20, - 73y z°)u,, 2zt — z°) fof any k € I8
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System (5) has the solution z = z! — z° and the Arrow—Hurwicz —
Uzawa CCQ at (z° z° is satisfied.

(v) Apply L.emma 4 (iii) and Lemma 5 (iv).

(vi) Let g satisfy the weak CCQ at (z° z%), i.e. let (27) hold. If the
Arrow—Hurwicz—Uzawa CCQ at (2% z° is not satisfied then System
{(25) has no solution z = €* (E, I and ] are again the sets defined in
{6)). By Lemma 2, there exists pu = (p,)sezr = 0such that

(38) Re [V.9(z°% z9v + 7;9(z% z°viHz < 0 for all z = C,
where
’ i
Vo= kE:I au, and 2, = g,k lli //Z 2 fl, e g
From (38) we have
(39) Ve, )V + Vag(et 207 = 0.
‘Evidently,
(40) v € S* and Re (g(z° z°, vd> = 0.

If v =0, then the system ]
2wl =0, (u)ser > 0,
730
has a solution, and by I,emma 1, the system
Re (u,, w) >0, & € E,

has no solution w € C”, which contradicts int S # . Consequently v # 0,
but this together with (39) and (40) contradicts the fact that g satisfies
the weak CCQ at (z° z9).
»
THEOREM 3. Let X ge an open set in' C*, let S = (" Hy be a poly-
k=1 ;
hedral cone in C*, let A, B € C"** and b = C™, and let
gz, w) = Az + Bw + b for all (z, w) € X x X.
If Y = {z € X|y(z,2z) € S} is nonempty, then § satisfies the reverse
concave CCQ at any (z°% z°) € Y X Y.
Proof. Tet z° € Y. Fvidently the function g is differentiable at (z°, z°)
and \/,9(z°% z°) = AT, \73g9(«% z°) = BT. The function ¢ being pseudo-
concave at (z° z° with respect, to H, for all k « {1, ..., p}, it follows

that the function g satisfies the reverse concave CCQ at (z9, z°).
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COROLLARY 2. Let X, S, g and Y be as in Theorem 3. Then the
Junction g satisfies :

a) the Arrow— Hurwicz— Uzawa CCQ at any (2% z0) €Y X Y, and

b) the Kuhn— Tucker CCQ at any (2°, ) €Y xY,

Proof. In view of Theorem 3, the function g satisfies the reverse con-
cave CCQ at any (2% z°) €Y « Y. Now by applying Lemma 5 (i) and
(ii), the corollary follows.

4. A Kubn-Tueker Theorem in Complex Space
. < p
cHEOREM 4. Let X be a noncmpty opeh set in C*, let S = Hu,
k=1

be a polvhedral conc in C” with nonempty interior, let f: X X X - C and
g: X X X 5> (" laY = {z = X[g(z, z) = S}, let 2° €Y be a local mini-
mum point of Problem (P), let f and g be differentiable fumctions at (2% z°)
and let E be the set defined by (6).

Suppose in addition that one of following conditions holds :

(i) g satisfies the Arrow— Hurwicz— Uzawa CCQ at (2% 79 ;

(i) g satisfies the ISuhn—Tucker CCQ at (z° z9;

(iii) g satisfies the reverse concave CCQ at (z° 70) ;

(iv) g satisfies the weak CCQ at (2% 0 ;

(v)  satisfies  Slater’s CCQ with respect to Y and ¢ 1s concave at

(20, z°) with respect to S
(vi) g salisfies the strict CCQ with respect 10'Y and is concave at (2% z°)
with respect to S

(vil) g satisfies Karlin's CCQ wilh respect. to Y, X is convex and

g is concave on X X X with respect to S.

N H..,,)$ c S* such that

Then there exists V E(
kel

A1) VS0 20 4 Viflz’ 2%) — Vag(z0 2% — Viy(e® 20)v =10

(42) Redg(z% 29, v) = 0.

Proof. Let z° € Y be a local minimum point of Problem (P) and let
E, I and J be the scts defined by (6).

1n view of TLemma 5 we need to establish the theoreth tnder the assump-

tions (i) and (ii).
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(i) By "Theorem 2 therc exists a = & Ry and u = (ﬂ H,,krg S
sl
such that (I), (IT) and (IIT) hold. We will show that Jis empty. Then by
Corollary 1 we have © # 0.
Assume [ is onempty. We will now show by contradiction that = # 0.
Suppose that = =0, then from (Ta) it follows that u; # O, and hence

(43) (7\/t)ke] 2 0

Since ¢ satisfies the Arrow—Hurwicz—Uzawa CCQ at (z° z°), there
exists a z € C* such that

44) Re~/,4(z°, T/4"-)11,z + /g (20 20, zy >0, ke |
Red\/9(z% 26)"1;. -+ Vg (2% ;/‘_O)lTk: 7y z0, k=1,
Trom (I), (43) and (44) we have
Redg(z% 2% 4 7zg(z% 20, z) =

= Re

;p%Vm@%Pmp+vm@%ﬁﬁmw]>Q

which contradicts (IT) for = = 0. Consequently ] = . Then by Corollary 1,
it follows that = 0. Dividing (II) and (III) by 7> 0 and setting

v = (ljx)u = (m H..],)*g S* we get that (41) and (42).
kel -

(il) Let z = @7 suct that (26) holds. Since g satisfies the Kuhn—Tucker
CCQ at (2% z°), there exists an >0 and a function b: [0, e[ > C¥
differentiable at 0, such that

-

(45) h(0) = z°, _:; HO0) = z

and W) € X, gb(t), b()] € S for all £ & [0, .
Since z° is a local minimum of Problem (P) we have

l e
£ Re {/b(1), {0 > 0,
or equivalently,

(46) Re{—ddT £Th(D), EWH =20,

=0
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From (45) and (46) it follows that

Re {[Vaf (2, 29) 17z 4 [Vif (2% 29177} > 0.

Therefore the system

[ Re<vuf (28, @) + Vif(as, ), 25 <0,
] Re (/.4(z° 2%u, + Vig(z® z%u, z> >0, k< E,

has no solution z< C*. Then by Lemma 1 the system
(47) T[Va/ (2% 2) + Vif (20 79)] =
_keEE e [Vzg(zoj)“k + Vig(z% 2%u,] = 0,

ﬁas a‘solution (v, up) 2 0 with = > 0, where p, = (Wp)rep. Since © > 0
is equivalent to v > 0, from (47) it follows that

Vaf (2 2%) + Vaf (2% 7% — \/.8(#% 20)v — ag(zS, 7)v = 0,

where v = E LE ,.

k=1 T

Let us denote by

3 ;IP'"/T’ ke E
kO, ke{l, ..., p}/E.

»
sk =
Then V= ,; Nu, and ve (ﬂ H..k' < S*. Moreover Re {g(z% z°,v) =0.

kel !
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