MATHEMATICA — REVUE D’ANALYSE NUMERIQUE
ET DE THEORIE DE L’APPROXIMATION

I’ANALYSE NUMERIQUE ET LA THEORIE DE L’APPROXIMATION
Tome 9, N® 2, 1980, pp. 181--188

DISTANCES FOR VECTOR-VALUED NORMS
by

G. GODINI
(Bucharest)

1. Introduetion. TLet E be a lienar space over the (real or complex)
field K endomed with a (vector-valued) norm | -§ with values in the plane
R? (with its natural partial ordering), i.e., |- ]: E- R? satisfies the follo-
wing axioms: 1°) |xj > 0 if x # 0 and 10 =0; 2°) the clements |x, +
+ %l | %] + | %2 | are comparable and | % | < | 2+ 2] (v, % = E);
3% Iax] = [A[]x] A = K, x = E).

When G is a nonempty set of E and x = E, the ,,distance” of % to G
for the case of norms with values in R?, denoted by prsr (x, G), was intro-
duced in [1] using the notion of ,infimum” of any set 4 ( I8, which is
uo longer a point, but a set in the plane R?, denoted by Nv A (see Defini-
tion 1 below). Consequentely prsr(x, G) =1Np {Jx —gl:g=G} is in
general a subset pf R In [3] we extended some well-known properties
of the numbers dist (.,.) (the distance of a point to a subset of a normed
linear space) for the subsets of the plane %, prsr (.,.). We have intro- ~
‘duced a suitable partial pre-order relation < for subsets of R? which are
bounded from below in R?, in such a way that it we have an inequality

- where the ‘numbers dist (.,.) appear, then the relation remain valid if
we replace dist with prgr and < with <.

Another definition of the , infimum’ of a set 4 C R? was also intro-
duced in [1] (see also [2], §4) denoted by 1N, 4 which is in general larger
than INP 4. Consequently, we can define a ,,new’” distance of ¥ to G, deno-
ted p1sr, (x, G) for the case of norms with values in R2 ([11, [2]). In
the present paper we shall study this new distance following the same line
as in [3]. We shall introduce another partial pre-order relation <, for
:subsets of R? which are bounded from below, so that the properties of DIST,
{.,.) extend again the properties of dist (+,.). Some results will be similar
“with those of [3]. When the proofs will be similar with the ones of [3], we
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shall omit them. We conclude the paper showing how the results of [3]
can be extended for the case of vector-valued norms with values in a refle-

xive Banach lattice.

2. We recall the definitions of mw A and Nr, A for a subset 4 C R?
([1], [2]). For a subset A ( R? we denote by A the closure of 4 in &%

Definition 1 ([17, [2]). Let A C R® and lel p = R2. We shall sayv
that p € 1Nt A if the following lwo conditions are satisfred :

1°) There exists no a < A such that a < p.

2°) p = A

This definition is a particular case of the definition of weak or strong
extremum with respect to a closed convex cone, of a set Ain a Banach
space ([4], [3], sce also Definiton 6 below).

Definition 2 ([1], [2], Lee A CR* and let p = R We shall
say that p = INv, A of the following two conditions are satisfied,.

1°) There exists no a € A such that a < p.

2°) For each real € > 0 there exists an element a € A such thal a < p +
4 ¢ ¢ (where e = (1, 1) € RR?).

As it was remarked in [2], we have always :
(1) mwr A =AM 1y, 4

and Proposition 1, Remark la and Remark 1b of [2] are also true for
Ny, (see Lemmas 1—3 below). » .

Let L be the collection of all nonempty subsets of R* which are
bounded from below (i.c., there exists » € R?, which depeunds on A4, such
that » < a for all a € A).

tEMMA 1 ([2). Let A & M and a € A. Then there exists p < 1INy, 4
such that p < a. In particular, 1Ny, A # O. "

1EMMA 2 ([21). For each monempty subset A C R we have 1xv, A C
C 1Ny, A. |

For A = M, let p; =inf {o; 1 (og, ot5) € A}, 7 =1, 2.

rEMMA 3 ([2)). Let A & M. If m = (g, po) € 4, then v, A = {m}.

Remark 1. Let 4 € Mand let p € inr, 4. Then there exists 4 = INp
4 (C A) such that @ < p. Indeed, since p = nr, 4, for each positive
integer » there exists @, € A such that a, < p -+ efn. Hence, since 4 < [,
the sequence {a,},.: is bounded in R2 Let {a,,k}fﬁ:l be a convergent sub-

sequence of {a,},_, and let @ = lim a,,. Then ¢ € A and clearly we have

ko0
a < p. Since p = 1InT, 4, it follows @ € N1 4.
Remark 2. For each 4 €  we have INr, 4 = inv A. Indeed, by
(1) we have v A  1nv, A. Let now p < 1nr, 4. By Remark 1, there

3 DISTANCES FOR VECTOR-VALUED NORMS 183

exists @ < N8 A (C A) such that @ < p. Since p = vp, 4, it follows p =
= 4 < INF A.

PROPOSITION 1. Let A, B & Ml and » € R, » > 0. Then :

i) 1NF, (INF, A) CINF, A

i) INF, (INF, ) = ve, A = INF, (INE, 4)

iii) r, (4 U B) C (inr, 4) U (ine, B)

iv) nw, (4 + B) C (inw, 4) + (inw, B)

v) IN¥, (A4) = A InF, 4.

Proof. Some easy modifications in the proof of Proposition 1 of [3],
using Lemmas 1,2, Remarks 1,2 and formula (1) above show i) — ).
Use also Proposition 1 of [3] for the proofs of ii) and iv). For example
iv) is an immediate consequence of Remark 2 above and [3] (Remark
1 and Proposition 1 (iv)). . .

In [3] we have introduced the following partial pre-order relation
on M :

Definition 3 ([3). For 4, B e M, we define A = B if
e (A B = mr A.

Now, we shall introduce another partial pre-order relation on _J.

Definition 4. For A, B € i, we define A =0 Baf e, (A ) B) =
= InT, 4.

Remark 3. It A, B « I, B C 4, then A4 <, B.

LEMyA 4. Let A, B = Jl. The following two assertions are equiva-
lent :

1) A< B

ii) For cach b & B and each g < R2 such that b < g, there cxists a < A,
a < gq.

Proof. i) = ii). Suppose we have i) and let b = B and g = IR? such
that b < g. Then ¢ & ™, (A U B) and by i), ¢ & 1N, 4. By Lemma 1,
there exists p < 1np, (4 (U B) such that p < b <gq. By i), p INe, 4
and so, for each ¢ > 0 there exists ¢ € 4, a < P 4 ee < g + ce. Therefore
q satisfies condition 2°) of Delinition 2. Since ¢ = N¥, 4, by Definition 2
there exists a.€ 4, a < gq.

1i) = 1i). Suppose we have ii) and we must show that :

(2) INF, (4 U B) = 1n1, 4

Let p = 1nr, (A4 U B). Then clearly there exists no @ € A with a < p.
Let ¢ > 0. Since p = 1np, (4 |J B), there exists b e A4 |J B such that
b<p+(ef2)e. If b= A then b < p--ee. If b = B, then b < p+oee
whence by ii) there exists @ € 4 with a < p + z¢. So, we have proved the
inclusion ( in (2). Tet now p = np, A and b € 4 U B with b < p. Then
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b B and by ii) there exists @ € 4 such that a <, contradicting p = Np, 4.
Thus p satisfies condition 1°) of Definition 2 for the set A |J B, and
obviotlisly p satisfies condition 2°) for 4 U B too (since p e 1Nw, 4). There-
fore p = N, (4 U B), which completes the proof.

Remark 4. Let A, B = . It is an immediate consequence of Lemina
4, that if for each b € B there exists a < A with @ € b, then 4 <, B. The
converse is not always true as simple examples show.

PROPOSITION 2. The mlation <, is a partial pre-ovder velation on JN.

Proof. By Definition 2, <, is reflexive. To show that <, is transitive,
use Iemma 4.

PROPOSITION 3. Let A, B e M. If A=, B then we have 4 = B.

Proof. Let b = B By Lemma 1, there exists p € INF, (A U B) such
that p < b. Since 4 <, B, it follows $ € INT, A. By Remark 1, there cxists
i e A with @ < . Therefore @ < b and by (3], Lemma 1 iii) =1) we
get A < B, which completes the proof

Simple examples show that the converse of Proposition 3 is not always
true.

Remark 5. One can show that for 4, B<= i, the condition 4 =, B
is equivalent with the following two conditions: i) 4 = B; ii) For each
p = INp, A there exists no b = B with b < 2.

criorEM 1. Let A, B = M. The following assertions are equivalent :

1) A=<, B

i) 4 UC<L, BUC for each C = M

i) A +C<, B+ C for each C = M

iv) ad = AB for each » € R, x >0
Eacl of the above assertions implies :

v) e, A< N, B

Proof. 'The proof of the equivalences i) < ii) <> iii) < iv) is similar
with the proof of {31, Theorem 1 (using Lemma 4 above) and we omit it

i) = v). Let p = mnr, B. By Rema1k 1, there exists & € B with & < p.
By i) and Proposition 3, we get A < B, whence by 3] (emma 1 i) = ii))
there exists @ € A such thatd < b ( < p). By Lemma | there exists ¢ < INT,
A with ¢ < 4. By Lemma 2, ¢ € mxr, 4 and since ¢ < 2, by Remark 4
we obtain v), which completes the prool.

In [3], Theorem 1 we have shown that for A, B & JH, the relation
A~ B is equivalent with vy A < 1Np B, Simple examples show that
the relation 1nw, 4 <, 1nw, B does not imply 4 =, B.
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Some immediate consequences of Theorem 1 are:

corROLTLARY 1. Let A, B,C, D & M be such that A <; B and C <, D.
Then : 1

HN4UC,BUD

iyd +C=, B4 D

Corollary Z. LetA, B e M be such that B A. Thew inv, 'Jd ~, 1N, B.

Notation. Tor A, B € M we shall usc the notation 4 ~, B'if both
A=, B aud B=<; 4 hold. :

Remark 6. For A, B e M we have A~y B il and only if np, 4 =
— Ny, B. Indeed, if 4~ B then np, 4 =g, (4 U B) =wr, B.
Couversely, suppose INIY, A = INr, B. W¢' show that 4 =, B 'the proot
for B<, A being similar. Ict b e B and g = R with b <q. Then ¢ =1nF,
B and by hypothesis, ¢ 2 inp, 4. By Lemma 1, there cxists p & 1Np, B
such that p < b. Then b e INT, A and so for each > 0'there existes
a4 with a < p + =20 <b+ ec<qg-+ee. Since g satisfies  condition
2°) of Definition 2 and g 2 INF, A4, it follows that there is @ = 4 with
a < g. By Lemma 4 we get A 51 B.

PROPOSITION 4. Ior cach A'€ M we have 1Nr, 4 ~,'1Nw, 4.
Proof. Use Remark 6 and Proposition 1 ii).

In [3] for 4, B M we used the notation A ~ B if both 4 = ; B and
B =< A hold. In Proposition_ 3 of [3] we have shown that for each A = M
we have A~1mp A ~ e A Simple examples show that the relation
A ~p1N1, A is not always true. .

PROPOSITION O. Let A, B € M. We have :

i) e (4 U B) ~, (o, A) U (ivr, B)

i) e (4 + B) ~y (v, 'A) 4 (N, B)

Proof i) By Corollary 2 we obtain N, (4 U B) =Ny, 4 and Nw,
(4 \J B) <;1ne, B, whence Dby Corollary 1 1) we 'get g, (4 U B) <y
(I\II‘ 4) U (Nt B). Let now. p = nw; (4 B). By Proposition 1 1iii),
it follows j) e (e, 4).U (inw, B), whence by Remark 4 (1w, 4) [
\J (i, B) =y 1nw, (4 U B), which shows i). ' o

i) Let p = ([T\TF A) 4 (ixp, B). Then p = p, + p, for some p, <
< v, A and p, = inr, B. By Remark 1, there is 4€ A with @ £ p, and
b € B with § < p,. By Lemma 1, there exists g € N1y, (4 4+ B) such
that ¢ < @ + 5. By Lemma 2.-and [3], Remark 1 it follows g = INI,
(A 4 B). Since ¢ < @& + b.& py+ ps = p, by Remark, 4 we obtain Nty
(4 + B) <, (int, 4) 4 (mvw, B). Let now p< 1w, (4 + B): By Remark
1, there exists d € 4 + B (=A + B) with d < p. Then d = + b for
some @ < A and 5 € B. By Lemma 1, there is plc e, A and py € INp,
B with p, < 4, p, < 5. By Lemma 2 we get P, = INp, APy E INTY B
Hence, p, + p, = (anw, 4) + (ixw, B) and p; + p, < 4 QB =i < p. By

3 -- L'analyse numérigue et la théotie de l'approximalion — Tome 9, No, 2. 1980.
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Remark 4 we obtain ' (in1, ) 4-(1nr, B) <4 18w, (4 - B), which completes.

the proof.

In [3], Proposition 4 we proved for ~ and 1Nt a stronger result then
Proposition 5 above. Namniely, we have for each 4, B H A UnB ~
~ (ix1 4) U (ine B) and 4 4+ B ~ (inv A) + (inw B). These’ hre not
always true for ~, and inw, as simple examples show.

3. Let E be a linear space endowed with a vector-valued norm with
Xalues in R* and let G be a nonempty subset of E. We shall denote by
G the closure of G in the norm §-f. For x= E let pisr, (x, G) be defined
by :

DIST, (%, G) = Np, {Jx — ¢z € G}

Clearly, prsr, (¥, G) C {p € B8:p> 0}, whence prst, (¥, G) € M. To
extend some known resuits of dist (. ,.) for p1st, (., .) we need the follo-
wing extension of the notion of convex function (see also [3], for another
definition useful for p1st (., .)). Let F be a linear space and let U : E 5 2®°

be a set-valued mapping, where 2% means the set of all nonempty subsets
of R2,

Definition 5. The set-valued mapping U: E - 2% 4y called con-
vexy of the following two conditions are satisfied :

1°) U(x) € M for each x = E.

2°) Uz, + (1 — N)vy) = 2U(%) + (1 — 3)U(x,) for each x, € F,
1= 1,2and cach » € Rwith 0 < » < 1.

The following theorem extends for prsr, (., .) some properties of
the usual distance dist (., .) (see e.g., [6], Theorem 6.5 for the corresponding
results for dist (.I,.); see also [3], Theorem 2 for the results concerning
p1st (., .)). We shall denote by p either the clement p or the set {p}.

THEOREM 2. Let E be a lincar space endowed with a norm with va-
lues tn R2, G a nonemptly subsct of E and x, y € E. We have :

19)§) 0=y st (%, G)
il) vrst, (v, G) =0 for cach g = G
iii) pist, (%, G) =4 pIST (v, G) + fx — ¥}
iv) pist, (%, G) < |x — g| for cach g = G
v) pIst, (x, G) ~, pisT, (, G)
2°) If G, C G, G, # O, then pisr, (x, G) =, DIsT, (%, Gy).

3°) Let G be a convex subset of E. Then the set-valued mapping pisr,
(..G) E - 2B 45 comyex,.

4°) If G is a linear subspace of E and v < K, then :
i) prst, (vx, G) = jy]pIst, (%, G)
ii)¥o1st, (x + ¥, G) <\, brsr, (%, G) + pIst, (v, G)

7 G. GODINI 187

Proof. Fasy modifications in the proof of [3], Theorem 2 show the
above result. We only want to note that though in [3] we have used
somie results which are'not valid for 1n1,, these can he avoided uvsing the
results of this paper.

The next result extends the continuity property of dist (., G) for
pist, (., G). However, it says no more than Proposition 5 of [3] as one
can see by the proof below.

PROPOSITION 6. Let E be a limear space endowed with a norm with

vabues in R, O # G C E and let {x,}"0 C E be such that lim fx, — x,] = 0.
H—>0
Then for cach p, € 1Ny, DIST, (%, G), lhere exists p, < INT, DIST, (%, G),
= 1,2, ..... such that lim p, = p,.
N—+ 30

Proof. By Proposition 1 ii), Remark 2 and [3], Proposition 1 ii) we
obtain INF, DIST, (%, G) = INI* DIST (%, G) for each x = E, whence the
result follows by Proposition 5 of {3].

Proposition 6 of [3] is stronger than the same result where we replace
pret with prsr, (this being a consequence of the fact that prsr (x, G) C
C pisty, (x, G), for each x € E), and we omit it.

The results of section 2 and 3 remain valid if we replace everywhere
2 by N*, the generalizations being straightforward.

4. For a subset 4 of a normed linear space X, we shall denote by
w—cl 4, the closure of A4 for the ¢ (X, X*)-topology. Let K be a closed
convex cone of X (with vertex at the origin). Then K induces a partial
pre-order relation on X, denoted by < and defined by « < yify — x € K.

Definition 6 ({4], [8]). Let A be a subsel of the normed lincar space
X and K a closed convex cone of X. The element p = X is called a weak
extremum of A with respect to K if the following two conditions are satisfied :

1°) There exists no a = A such that a < p.

2% p & w—cl 4.

In the sequel X will be a reflexive Banach lattice, K = {x € X 1 x >
> 0} and for each nonempty set ' 4 (C X we denote by INF A the set of
all weak extrema of 4 with respect to K. Note that for X = R?, the set
of all weak extrema with respect to K is nothing clse than iny 4 given
by Definition 1.

Let M be the set of all nonempty subsets of X which are bounded from
below.

Using Zorn’s Lemma one can show the following generalization of
Proposition 1 of [2]. The last statement of the next lemma was announced
in [5], p. 141, statement (ii), but the hypotheses on X are different.

LEMMA 5. Lel X be a reflexive Bawnach lattice, A € M and a = A.
Then there cxists p € INv A such that p < a. In particular 1Ny A # O.
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All results of [3], §2 are true if we replace everywhere IR? with a refle-
xive Banach lattice X, and the closure of any set A with w—cl 4, the proofs
being similar, (Note that in [3] Definition 1 we replace also A and B with
w—cl 4 and w—cl B).

It £ is a linear space endowed with a norm I} with values in K, G
a nonempty subset of E and x € E then for prsr (x, G) = vr {Jx — gf:
1g € G} C K, the results of [3], §3 are also true, the proofs being similar
with those given in [3].
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