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1. Introduetion

In this paper a special class of geometric programming problems is
considered. In order to solve such a problem, ie. to minimize a general
posinomial subject to arbitrary linear constraints, a variant of conjugate
gradients method is proposed. First a new form of optimal criteria for
the solution of such a problem is established. Then a method of projection
gradients. are described to slove the problem. To illustrate the algorithm
a small example are also presented.

2, Preliminary results

In this section some results regarding the optimal solution of the geo-

metric programs with linear constraints are established. The problem consi-
i 0
dered here is the following : given p: Ry - R,

i)(x) =] 2 ¢ xail x‘;iZ . x:{,u‘
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called posinomial, and
Q={x < R:Bx <bh, x>0}
where B = (b;;) € M,,..,(R), b € M,, ., (R), the problem we will dealing

with is:

(1) inf {p(x):x =Q}

or explicitely

1’ 1 @il % Cin .

(1) 1nf{§c,-xl%2z coxm Bx < b, x> 0}

Consider ¢: R* - R,
§(z) = (er en ... )T = ez,
If we take x = e%, then

9(z) = (p o 9)(z) = 2 e,

tel
where
A= (anan ... ) € Mi(R),

1S a convex fU.llCthll on I{ alld 1()b a]lSJ rme 1TO b
3 ) lem 1 15 tr )
AR lllb e(lt Valel] one ( ) 0 d 1’ hC fono

(2) inf {35 c,ev' 7 Ber < b
e/

h ILE)(')IMA l.ﬂx0 < R* ds oplimal  solution to (1) 4ff 20 =1In x° —
=(nx, In 23, ..., InxY) € R” is optimal solution to (2). |

Proof. (=) Consider x° € Q opti :
I ptimal soluti 4x g 0)eis
is optimal to (2). Indced, since x° = Q we hav(e)rl sostiiRitheriiztls biliig

Ax°< h, x°> 0,
or

Ae® < b,

and, therefore, z° is 'a feasible soluti

. e, . ution to (2). Assume the

z<0 1s not optimal solution to (2). Then there gs AN | i foer Coﬁ'.tfir};i l:'hat
< b and such that | 1 Eatl.

q(z') < g(z°),
that means

P(g(=) < p(g(z%),
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or
7

HIX) < p(x?), X =¥,

a contradiction.
(«<) Is similar.
In the case when by Ry, 1 =1, 2, ..., m, j=1 2, ..., n pro-
blem (2) is obviously a convex programming problem.
Denote by
Z = {z =« R":Bet < b}

the feasible set of the problem (2).

3. Necessary and suflicient eonditions for optimal solution
If z° = Z, det | Jo={ibe®i= b} and J = {1: bie® < b.} (J_U
U Jo =412, ..., ;)

Assume that vectors W, ¢ € J, are linearly independent. Then if
Bj, is the matrix formed by the vectors b, i = J,, then (see [2], p. 147)

matrices :
Q — I}}‘D(BJOB}‘a)—IB]o = N[”X"(l{)
P—E--Q,

are the operators of orthogonal projection onto the subspace D ( R spanned
by the vectors b, i€ J, and DL — the orthogonal subspace of D, res-

pectively.
Tt is known that
0Q —Q: PP—P
Qr =0; PT =P
rPQ =0.

LEMMA 2. Assume that B = M, (R.), b e M, (R) and that (2) is
superconsistent. Then 7° € Z 15 optimal solution to the problem (2) iff

) > o (a0Pat (20) = 0
iel
(11) 2 '1),-(Z°) (B]nB}‘n)_lB]oai.T(Zol) < 0’
iel
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where

. a; a; .
ie L i1 i2 Ay
az) =—, =, ..., 2
g% ol s

3 < . .
Proof. Since in this .case problem (2) is convex and superconsistent
with coutinuously differentiable objective and constraint functions, from

Kuhn—Tucker’s theorem it follows that z° e 7 is optimal solution to (2)

if there is u® e R} such that

10 wi(bie® — b)) =0, i =1, 2, L om

m

20 </q(z°) + Zu, (bier— b)) = 0.
Since #{ =0, 7 € J  from 2° we have
(3) Ev a2 4 D ulhi- = 0,

’ejﬂ
From (3) it is scen that

v,(z%a*(z%) = DL
1C[

and, therefore,

P (35 v, (z0as" =2 0,(z)Pai-"(z9) = 0

=y _e— 1
ie. (i) holds.
. In order to prove (ii) we observe that (3) can be written under the
rom |

2'4’4('/4")11‘-(20) -~ u"TB]a — 0

1]
or, by transposing,
(4) 1ﬂ@%ﬂ0ﬂ+“ﬂﬂ*0

Multiplying (4) by (B,,B},)” B} we get
Hmmrgolym)mmﬂmko

b

ie. (i).
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THROREM 1. Let (1) be a superconsistent geometric program with
by eRy, i=1,2, ..., m; =12, ..., n. Then x° = Q 1s optimal
solutton to (1) if and only if : I

1° > w(x9)Palf(x") = 0,
iel
& EI w,(x%) By, B7,) "' B0 1(x%) < 0,
ie
where
#i(X) = G et e et &
Wi = (T Sy
#1 <) P

Proof. Lemma 1 shows that x° is optimal solution to (1) if and only
if 2% == In x° is optimal solution to (2). As p1og1am (1) is superconsistent
so is (2). Since b; € R, i=1, 2, ..., 4=1, 2, ..., n, program
(2) is convex, and from Lemma 2 z% is optlmal for (2) it and ounly if
{i)—(ii) hold.

Because z? = In x% we have

" 0 n
> @i % > a; 1n x;) "
] . j=1 i F=1 . N 0
v;(2%) = ¢ e =c;e = (%)% = uy(x°);

j=1
- (20) — v G2 B\ (G %2 LI W al (x9)
= o’ 0 0 = 0 ) — £ o

e*1 %2 en *1 ¥ ¥

Therefore (i)—(il) are equivalent to 1°—2°

%. Minimization of a posinomial on a subspace

Now suppose that we have to minimize the posinomial

® po) = X ) = 5 st o

=
subject to the liniar constraints
(6) hix =b;, 1 € J.
Assume that vectors a', ¢+ € J, are linecarly independent.
Let x° € R, be a point which satisfies (6), i.e.

B;x% = by,
7 7

where b; is a vector whose components are b, 7 € J.
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Now we introdus a new variable y € R* defined as follows:
x—x0 - Py, P—E— B/BB)) B,
and consider the function ¢:R" — R”,
o(y) = p(x° + Py).
EMMA 3. If X0 € X = {x = R : Byx = by}, then
Vy e R* =x=x"+Py € X.
Proof. First we observe that
B;P = B,(E — B} (B;B})'B;) = By — (B/B})(B,B;) 'B; =0,
thus
B;x = By(x® + Py) = Byx° 4 B;Py = B;x° = b,

According to the rules of differentiation of a composite function and
in view of the symmetry of operator P, we have for each y € R’ such
that x° 4+ Py = 101’;,

7) VTo(y) = PV p(x),

PHEOREM 2. Assume that by € Ry, i J, j=1,2, ..., n If
y* < R is a point of global minimum of the function ¢ and the corresponding
point

X* — x0 |- Py* = %,
then X*'is the minimum point of p on X.

Proof. Let y* € R be a point of global minimum of ¢. Since in this
case @ is differentiable at y* (as a composite of two differentiable func-
tions), it follows that

Veo(y*) =0,
therefore
8 PUTp(x*) = 0,
Taking :
u = —(B/By) 1B, Tp(x¥),
from (8) we derive

(E — Bi(B;B)) "B, "p(x*) = v p(x*) -+ Bju=0,
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which represents the necessary condition for x* to be minimum point to

p on X.
But condition
9) ITp(x*) + Bju =0
is equivalent to
(10) B by =0, 5 =12
From
p(x) = ¢(Inx),
we have
op(#*) dq(z*)
11 11 - 1z

Replacing (11) in (10) we get

dq(z* i .
# —{—2 u,-b.,-je] =0,7=1, 2 ..., n
024 = ’
which shows that z* = In x* is a minimum point of ¢ on

Z = {z. = R": Bjer = by},

since ¢ and constraints
L
o :
2 bydi b =0, i <]
7=1

are comnvex.

Now from Theorem 1 it folliws that x* is also a minimum point of
4 on X. .

Theorem 2 shows that the problem

min {p(x): By x = by, x> 0}

can be reduced to the minimization of ¢ without constraints.
o minimize @(y) we apply the method of conjugate gradients :

y'=0
1= —/7p(0)
yk+1: yk + ock,H(lkﬂ, k }/()
, IV 9h) I
12 A1 = <7 To(y* wa V.V AL (]
(12) V) F
N vyhett
(13) Oppr = — a1 g(yhat T

N
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1uMMA 4. For each k € N,
(14) Pd* = d¢

Proof. Can be done by induction, using (12), (13), PP = P and the
relationship between \/o(y) and /p(x).

THEOREM 3. The problem of minimization of the /msmomml b with

constraints (6) vs solved by the follozmng algorithin : given an initial point x°
which satisfies (6), \

&= — 2 ,(x0) Pai- (x°)
isl

Xp1 = X¥ A o gditl

” 2“ xk) Ilal k) ”z
’Z’u Xk ll)ll‘k 1”2

1 (x¥)at* (x¥) a#

(15) déhl = = E (x4) Pai-" (xF) |-

el
(16) op41 — — R k = 0,
E (Xk) (1k+11 ( k)dk+1
=g
where
i e o) Sy e T8 e
k k %
1 3 1 v,z‘,' i1 o
A By i E
Afx) = [mvmss wovarmes s aemt
Bin %1 Gy Y @ (2, —1)
p k ) PN ST
L o x* K

Proof. T'ron {7) and Temma 4, it follows :
xkF = x° + Py*
Xt = xb - P(yr+l — y#) = XF 4w PdA = x* - o déTE,
From (12) we have
1 = Py Tp(xk) 4 TLEIR e

P Tp (x* 1)

2wt axwz
= 2 uy(xk)Pai-T(x*) 4

=y ' HE” 2= 1ypai-" xk 1”2
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Now from (13) we get

; S wilxk) ol (x) a* !
Sl | PyTp(xk a*tt <
kel-1 1770 = + 1]
T L L T
T Py p(xr) Pab L > ui(xky a8 1T A (xry b+

el
since
V() = T u(x)Au(x).
5. Algorithm for geometrie programs with linear constraints

Let us return to the program (1) in which b s R, =1, 2, s, M

j=1,2, ..., n For each x € Q, consider

J(x) = {i: b x = b}
In what follows we assume that the following nondegeneracy condition
fulfilled : with any x '€ Q, vectors: bé-, 4 € J(x) are linearly independent.
We now propose the following algorithm for solving, problem (1).

Starting with an arbitrary point x? & Q, assume that we have already
constructed x%, x%, ..., x*. To "constructe x#*1 we proceed as follows:
we take the set of indices J. = J(x*) and we construct projection matrix

(17) P, =E—B; (B, B;) B, .
Then calculate the quantities:

(18) _ M;EMWENWj

(19) w, = 2 w(x) (B, B]) 1 By 0t ()

and test for the optimality of \" (’l‘heorem 1).

If 8% # 0. then we apply thc method of conjugate gradLents to solve
the problem of minimization of p(x) with constraints

Wox —b =0, i< J,

However, in applying the method of conjugate gradients the following
check should be made. Compute the quantity

o h ‘ H L
ak”;mm -—» r >0:1& ],

5 — L'analyse numérique et la théorie de I'approximation — Tome 9, No. 2. 1980,
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Then

A X* o B, g << Okt

Pxh o g AP oy = Ok

xktl —

In the second case, i.e. Xk = Xk + o, d¥F1, the process of of appli-
cation of conjugate gradients stops.

If § = 0 and there exists j € {1., 2, ..., n} such that uf’ > 0, con-
struct the set'of indices

and apply the method of conjugate gradients, corresponding to Ji. At
every step a check is made whether the point x*+! < 0, or not. If DGR | N
then the problem (1) has no solution.

Thus, the outlin of the algorithm for finding an optimal solution to
the problem (1) is the following:

Starting from an arbitrary x° € Q, set k: = 0.

Step 1. Select the set of indices [, = J(xF).

Step 2. Construct 'the projection matrix P, as in (17).

Step 3. Calculate 8% and u*as in (18) and (19) respectively.

Step 4. If §* =0, go to Step 7; otherwise applying the method of
conjugate gradients, find the solution xk+1 of the problem

min {p(x): bx* — b, =0, 7 = J,}.

Step 5. 1f x < 0 then stop; otherwise go to Step 6. (If x* < 0 then
program (1) has no optimal solution).
Step 6. Set k; =1L +4 1 and go to Step 1.

Step 7. If u* < 0, then stop, x* = x* is optimal solution of the pro-
blem (1) ; otherwise select u} > 0 and the index set

[I: T ]k\ {]}
and go to Step 2.
Remark 1. 1f at Step 2, J, = @, then the projection matrix P, = E.

Remark 2. The convergence of the algorithm follows from the con-
vergence of the method of conjugate gradients for the minimization pro-
blem of a convex function with linear constraints (see [3]).
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6. Example
Consider the problem
px) = x;' x; ' — min
X, %y <1 x, > 0, xy > 0.

Take x° = (3/4, 1/4).
Step 1. J, = {1}

Step 2.
) —1/2
P, :( 1/2 1/ )
—1/2 1/2
Step 3.
80:_61(—1))]40::_21_
9 1 9

Step 4. As 8° # 0, we find the optimal solution of the problem
min {xfl vt K oxe =1}
which is x' = (1/2, 1/2).
Step 5. x> 0.
Step 1. J, = {1}.
Step 2.
1/2 —1/2;
P |
—1/2 1/2
Step 3. 3 =0, u! = —8 <0.
Thus, optimal solution is x* = (1/2, 1/2).
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