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1. Suppose that ¢, > 0 and g, # 0 for 'infinitely many. valeus of
#. We shall let x and z stand, throughout, for a real and complex number
respectively. Let r denote the radius of convergence of the power series

o0 .
5 q,2" (r < o). The analytic function represented by this power series
n=0

for |z| < # is given by

o
(1.1) q(a) = 25 g (Iz] < 7).
== o
Given an infinite series X a, with partial sum {s,} we say that the

method ( /, ¢) is applicable to > a,, if the series D q,8,2" converges for |z|<
n=0 n=0

< 7, say to ¢,(z), and the sequence to function transformation Ji(x) =

— ¢,(%)/q(%) exists for 0 < x < 7. Further, if J/(x) —»/(x —»7—), then

the series 2 a,, is said to be summable (], ¢) to I. It is said to be absolu-

tely summable (], ¢) or summable | ], g |if J¥(x) = BV (0,7) i.e. S 1d J(x)] <
p ‘

< 00. BORWEIN [1] has shown that the method (], ¢) is regular if and only

it g(x) - 0 as x - »—. BORWEIN [1, 2, 3] considered the inclusion relati-
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ons between (], #).and (], g) methods of summability. Das [7] has obtai-
ned inclusion relation between |/, 21 and | ], ¢| methods.

As well-known particular cases of the (J, ) method, we have the Abel
method (A) when ¢, = (n + 171 (see [9, 5], the method A,, when G, =
(-t
_( )

) (see [1, 5] (A, is the same as the Abel method) and the method

B, when g, = (['(n + o 1)) (B, is the same as the Borel method)
(see [9], p. 222).

A real method of summation ' is totally regular if s, — s implics
that T-limit of s, - s for all finite and infinite s as # — co. It is known
that a necessary and sufficient condition for a real triangular matrix trans-
formation to be totally regular is that it should be regular and positive
(sec [9], and [10] for a general result on the subject).

Throughout the paper we shall use the following notations :

For two summability processes A and B, A C B will mean that all
sequences (series) summable (A) are summable (B).

¢ will denote the space of convergent sequences.

Z,a, = (A) will mean that the series Z,a, is summable by the method
(A). If in this statement we replace (A) by ¢ then it will mean that the
series ¥, a, is a convergent series.

ey € (A, B) will stand for the statement that ,»summability - (A)
of Xa, implies summability (B) of Za,c¢,”

[

2. Fventhough for a regular (/. ¢) method the summability field of
(/, q) includes those of |/, ¢ and convergence, it is not clear if either
of these include the other for general {g,}. However, when o =1 n=
= 1,2, ..., so that (/. ¢) is the Abel metod A, wHITTAXER (16], by an
example suggested by J. B, LITTLEWO0OD showed that a Fourier series may
converge at a point without being summable [A|, while praSAD [14]
constructed an example of a Fourier series which is summable [A] ot a
point without being convergent at that point. Thus we can conclude that
the properties of convergence and summability |A,| of infinite series arc
independent of each other atleast for o — 0. This however raises the follo-
wing problem : Does there exist any « > -— 1 for which the propertics of
convergence and |A,| are not independent of each other. We do not kuow
the answer.

When ¢, = (#])71, so that (J. q) is the Borel method (B), we show
that the properties of convergence end summability |[B| for an infinite
series are independent of each other. Our remak is supported by

PROPOSITION 1. (1) There is a series summable IB | which is not con-
vergent,

(i) There is a series which is convergent but not summable |B .
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Proof. (i). Consider the series for which the nth partial sum is (—1)".
This series is mnot convergent but its Borel transform B(x) =
= c‘-‘fi (— 1)*x"/n! =e-2 = BV [0,00). Thus the series is summable [B].

n=0 3 »

(i) Let a, =0 (2 =0), and a, = (sinnt)/n (n = 1,2, ...). 11'1e series
Za, converges for all £. After simplification it can be seen that if this series
were summable |B| for £ = y then the integral

(2.1) et S ig—--«:é(xnsm (n 4 1)) (n -+ 1)1 | dx

n=0

will be convergent. Denoting the term inside the modulus sign by K(x, ),

we have
l o0

k(x, v) = Im \e_”' Yo (ateitt(n 4 1) 1) =
: n=0
== x T lem e gip (x sin y) — a7 le t
Thus
o0 oo
(2.2) I > S a7 dy — S |[x Yo 2¥siiy2 gin (x siny) |dx.
0 0

Choose § > 0 so small that sin (x sin v) is non-negative. Then the sccond
integral of (2.2) is not greater than

5
sin y S {e—2xsin*sl2sin (x sin y)/x sin v} dx -+
0

X lp—2vsind ¥/2 4 —

©r twy §

3 0
o= O( c"QXSi“’J’/de) 4+ O (8‘15 R dx) = O((sin2 y/2)77).
0 & r
Choosing v to be different from an even multiple of w, we have the ahove

integral bounded. But the divergence to infinity of the first integral of
(2.2) shows that 7 is divergent. Hence we establish the assertion.

3. In view of § 2 a natual question is to obtain necessary and  suffici-
ent conditions on a sequence {e,} such that Xa,z, is either summable | B
or |Ay| (¢ > — 1) whenever Za, is a convergent series. Along this line
is the following result:

THROREM A [15], ¢, = (¢, |A]) if and only if
(3.1) TN, | < o0,
{(3.2) Xle, |1l < o0,
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We shall first obtain e, such that e, < (¢, |J.ql) and then obtain

results for |A,| and |B| by assigning partlcular values to ¢,. Our results
will be the following theorems :

 THEOREM 1. Let g, > 0 and (], q) method be totally regular. Thén g, =
e. (C, I]’ g,) Only /”:f T3

(33) b ; Z ]Asn l < @,

and

(3.4) Zley| guli,| < o0,

hold, where

(35) w0 latore(o) ax
0

Jor every measurable, cssentially bounded veal Junction ¢(x).

THEOREM 2. Let g, > 0. Then the sufficient conditions for Za, e, =

n
n

€ 1], q| whenever s,= 2 a, = O(1) are (3.3) and
k=0

(36) F . X ' Sa IQn l ¢ni < 0,
where
(3.7) b, = S dix ‘ (x*/g(x)) ‘ dx

Remark. %, of (3.5) always exists for gs = 0 (see [8]).
4. We shall need the following lemmas :

LEMMA 1 ([6], lemma 8). If Xg,(x)s, comverges for 0 < x < v and
s sum tends to a limit as x — v — O whenever Sy 1S comvergent, thew there
are wumbers M, X such that % |g,(x)| < M for X'< x < 7.

LEMMA 2:([13], see also [15]). If a sequence {pn} of elememfs moa chach
space B has the property that there is a number H such ﬂmt Z + 2.

Jor each k and every set of signs &, then Y, /(Pa ) | <00 for every linear func—
tional f on B. 50 '

LEMMA 3. Let q, 20 and (], q) method be totally regular. Then Za,<'c
and Za,e, < (], q) implies ¢, = O(1).

<H
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Proof. If under the hypotheses of the lemma ¢, is not bounded, then

lim sup |e, | = + oo.Then there exists a sequence of p051tlve non- decreasmg
N—+ 0O

sequence of positive integres #n,, v =1, 2, ..., such that leny | > Vi
Choose a4, such 'that a, =0 (n ##,) and «, = v=2sgnle,, (# =mn,).

Thus Xa,| < E v7? < oo. But when » = n,, a,5, = a,e., = v 2g,,| > 1,

and so the ser1es 2,z ,,dlverges to 4+ co.'Since' (/, ¢) is assumed to he a
totally a regular method Za,z, is non-summable (J, ¢). Thus ¢,= O(1).

LEMMA 4. Let g, > O and (], q) method be totally vegular. Then e, <
€ (¢, ([, q) ondy if (3.3) holds. ;

Proof. Writing J(x) for the (], ¢) mean of the series Za,c, we have

(4.1) J(x) = q,(%) " q(x),
where
(4.2) g,(x) = ;U q,x" ’;) e,

Since, by hypothesis and Lemma 3, a, is co1‘1vergeﬁt and ¢, = O(1),
we have

E

n=—=0

guX 2 ak k

whenever |x| <7 since the radius convergence of Xg,»" is r. Thus by
change of order of summation in (4.2), we obtain

<035 nay v = o),

n=0

(43) i qs(x) i~ g) ey ;ﬂq' X

By Abel’s transformation

(44) . QS(x) i 2 SkAk( kk A gnx”)
provided that

(45) - lim (smsmqum) /1/ (](X) = 0.

But by hypothesis s, converges, by Lemma 3, since ¢, = O(l) and

since Xg,x" is convergent for 0 < x <<r, g,x" - 0 as # > o0. Hence (4. 5)
holds and therefore (4.4) is valid. Now write (4.1) in the ffom

(4.6) Js(x) = 2g,(x)s,

where

(4.7) &lx) = (g(x)) 711\, (Ehi (/"x”)‘
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Since, by hypothesis, J(x) exists for 0 < x < r and J(x) — a limit as x —
- r— whenever {s,} converges, by Lemma 2, there exists numbers M
and X such that

(4.8) %, 18(%) | < M (for X < x <7 and for all #).
It folows that
(4.9) lim sup Xg,(x)] < M.

A—rr—

But since, as x -7 —, X¢,%" — oo, and so 2 4, x”/q =1— (E g.x"[q(x )

which tends to I, it follows from (4.7) that &% ) - /\;5;. Hence
(4.10) | Al = Zy[lim g,(%) | < liminf|g,(x)] < lim sup |g,(x)| < M,
by (4.9). ' '

5. Proof of theorem 1. Since |(], q) | C (], q), necessity of (3.3) follows
from Lemma 4. In proving the necessity of (3.4) we shall use notations
of Lemma 4 for J(x) etc. without restatement.

Since J(x) exists for 0 < ¥ < 7 and so is dlfterentlable in [0, 7), we
obtain by straightforward calculation .

6.1 =55 e 2 (8 ot o)

A IR

e >] 0.

By Abel’s transformation,

(52) - ]l(x) = = 20 S’LAN (En
provided that

. d
(5.3) lim s, e, Y {(

M—+00

=0
But since {s,} € /,, {¢,} €1, and di {2 Ealie

- {(g’ — ¢'(%)q(x))/(g(x))?},

as m — o0, for 0 < x < 7, condition (5.3) is satisfied. Now from (5.2), we
have

B4 T = =3 st L g — 5,00, 5 ([ qveiata) =
= 1)+ St

ON- SOME SEQUENCE TO FUNCTION TRANSFORMATIONS 239

7

It con be checked that ,
65 (S )iaca) = (£, viriaen)

where
Ve =q,q1+29aqk—1+ ... T 1Gyfr—ns1 — (+1)qus190 —RQg — - —

— (b —7n+ 1)y hmns1 = — (B + Ugesr1 90 — (B — Vkgyqy — ... —
- (k 1 2” + )qk—"-i-lq’u

it being understood that g, = 0 if r is a negative integer. Now we sepa-
rately consider the cases 0 < & <%, # <k < 2n, k> 2n. In each case
it can be checked that IV, < 0 for all 7 and for 0 < % < 7 whenever ¢, > 0
(see McFadden [11]).

Hence it follows from (5.5) that

(5 s o=~

(5.6) S

2

- (B ey = .

since ¢g(x) > co as x —»r—.
Now from (5.4), we have by (5.6)

\ ) dx < E 501180 S{i(z qu")/q )} v A

"= dx

SIS AL & KE | Al <
n=0

n=0

by (3.3) and the fact that s, = O(1).

We are given S | J'(x) | dx < co. SinceS | Ja(%)| dx < oo, it follows from
0

(5.4) that

(5.7) S | (%) | dx < oo,

0

which is the same as

4

(

0

5 seatalldfdn) (gl < eo,
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for every convergent sequence s,. But (5.7) holds (see [15], lemma 2) if

and only if

14

(5.8) Hz%a%gwﬂMMstﬂwm
0

for some absolute positive constant H. In particular, (5.8) implies that

e tn - ()

e
(5.9) S < H

0 n=0 .
for each % and every sequence of signs. Hence, by Lemma 3, we have

Yolx) L (v fg(x)

dx < o

(5.10) Z; A

for every bounded, real function ¢(x).
This completes the proof of Theorem 1.

Proof of theorem 2. We are given that s, = O(1). Since

# n—1
2 g, = 2 Aes, + €,5,, we have g‘ a, g, < sup [sklg | Agy | +

+ O(1) = O(1), so that g,(x) = O(1) 2 g,x". Hence g, (x) exists for |x| <7,
n=0

Since g(x) # 0 for |x| <7, it follows that J(x) exists for x| <7 as a
power series expansion and therefore J(x) is differentiable in [0, 7). Now

we have

J'(x) = Ji(x) 4+ Jy(x) as in (5.4). But whenever X|As,| < oo, we have,

as befores [ Jo(x) | dx << 0. We have only to show that _g | ilx) | dx < o0,

0

Now

r

§ 17200 10 < E | $nendn | }— (2" /g(x) ‘ 762 lea1gu b < .

n=0 n—=0
0

This completes the proof of Theorem 2.

6. In this section we apply Theorem 1 and Theorem 2 to obtain
results for summability method |A4|. In this case 7 = 1, q(x) =(l—x)215

o0
=) A%
n=0
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THEOREM 3. Xa, is cownvergent implies Xa,e, € |Aq) (e > — 1)1 if and
only if (3.1) and (3.2) hold.
Proof. Sufficiency. In this case
= (#fq(x) = (1 — 2= (L~ 2= (L4 ).
A
Thus

(x < nffa+ 1+ n);
0(x > nfle + 1 4+ n).

If we write f(x) for (x”/g(x)), we have,

k

ax

iwﬂmw;{>

nf(n-l-or4-1)

fﬂ(qu«w)\dx:: { o wlatas — L (wrfg(x)dx =

dx

nf{n-o+1)
= f(n)(o + 1+ n)) —F(0) —f(1) +f(nf(e + 1 4 n)) = 2f(n)(a + 1 + n))=
= (#f(e + 1 4 n)" (o« + )T (n + o« + 1) = O(n=*"1).

Hence from 1Theorem 2 we obtain

23MM% O (X2 Je,lfns+1) A%) = O (30 w1e,)) = O(1),

n-=0

by the hypothesis.
Necessity. We [irst observe that we do not impose any additional res-

triction by assuming that (3.4) holds for every bounded comple§ func‘mo.n

o(¥). We next set ¢(x) = (1 — x)f (1= \'/— 1) in (3.4). Then the integral is

given by

1

; S (1 — x)atixtdx

0

S (1 — x)f - (1 — x)t1a%)dx

— 401 4 o+ )0+ DT + 2 4 @) | = (1 + 5 + a) juet,

Hence

e

0

En |€1ll A: < 0 ie. :2,,(l€n| /71) < 00,

Thus the proof of the theorem .is complete.
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10

7. In this section we apply Theorem 1 and Theorem 2 to absolute

Borel summability. In this case g(x 2 (x"/n!), and 7 = 0. Our

result is the following :

THEOREM 4. ¢, < (¢,|B]) if and only if

(7.1) %,/ Acy| < .
and |
' L
(7.2) Sfled 17} < oo,
Proof. Let f(x) = x"[q(x) = e~vx".
Hence f'(x) = —e=*x" 4+ nar—le=* = ¢~%x*~Yn — x). So

=2 0(x < n),

7.3 (x) =
(7.3) /(%) <0 (x> ).

Sufficiency. In view of (7.3) we find that
{17/l = (g +{ |17 1ax = (= { Fmyix =
= f(n) —f0)) — f(o) — f(n)) = 2f(x)= 2n"c™,
since f(0) = f(c0) = 0. Now

Eﬂ |€ﬁ| q” H’J” (o0 :2 E?l( |€1i| %"(/’7—“/’¢) g Zﬂ( (E-III /1l‘) < 0.
Necessity. x, = Sf’(x)q;(x)dx'(:hoose o{x) =1 (v <n), and o(x) =—1

0

{(x > n). Then

o]

%o =\ /' (p(x)dx = (§ =\ )f’(x)q»(x)dx:‘lﬂ”e‘”-

Substituting the value in (3.4) we see the necessity part of (7.2).

8. If one sets g(x) =log(l/(l — %)) and » =1 then (], ¢) method
reduces to the logarithmic method (L) (see [4]). Considering a series XZa,
such that FF(x)=2,a,x" is e~ (0+9 it is easy to sce that I'(x) is of bouded
variation over (0, 1) and thus making X¥,4,< |A|. However this series is
not summable (C, k) for any & > 0 (see [9], p. 109). Since [A|(C |L|
(sce [12], p. 453) not all series |I,| are Cesaro summable and a fmz‘wn
convergent. This raises the following problem :
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PROBLEM. Does there exist a series which is convergent but is not
summable |I,|?

We feel that the answer will be in the affirmative. Concerning the
convergence factors for series summable I, we conjecture the following:

COOJECTURE. ¢, € (¢, |L[) if and only if
E”I AE"I < o0 alld zﬂd Eﬂ/(’Z log n)} < 0.
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