L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 9, No 2, 1980, pp. 233-243 As well-known particular cases of the (1) primerbod, we have the relative method (A) when (I - 1) 1 (see S. 5 , the mollod A, when - sev. 1. 3' (A. is the name us the Abel method) and the method $E_{\rm s}$ when $\hat{q}_{\rm s} = (\Gamma(0) + 2 + \Omega(1))^{-1}$ [14] is the some on the observable method) > ON SOME SEQUENCE TO FUNCTION TRANSFORMATIONS For two commodility processes of and B, $\Lambda \subset \mathbb{R}$ will mean that all sequences (series) smallmide $\{N\}$ are manuable $\{1\}$. R.N. MOHAPATRA and G. DAS Laurenn auf an antiquiting (Santa Barbara, California) (A) If in this statement we replace (A) by a then it will mann that the 1. Suppose that $q_n \ge 0$ and $q_n \ne 0$ for infinitely many valeus of n. We shall let x and z stand, throughout, for a real and complex number respectively. Let r denote the radius of convergence of the power series $\sum_{n=0}^{\infty} q_n z^n$ $(r \leq \infty)$. The analytic function represented by this power series for |z| < r is given by $$q(z) = \sum_{n=0}^{\infty} q_n z^n \ (|z| < r).$$ Given an infinite series $\sum a_n$ with partial sum $\{s_n\}$ we say that the the properties of contract or period of the property of the second method (J,q) is applicable to $\sum_{n=0}^{\infty} a_n$, if the series $\sum_{n=0}^{\infty} q_n s_n z^n$ converges for |z| < 1< r, say to $q_s(z)$, and the sequence to function transformation $J^q(x) =$ $= q_s(x)/q(x)$ exists for 0 < x < r. Further, if $J^q(x) \to l(x \to r-)$, then the series $\sum a_n$ is said to be summable (J, q) to l. It is said to be absoluthat the proporties of convergence and summability is for all infemily tely summable (J, q) or summable |J, q| if $J^q(x) \in BV(0, r)$ i.e. $\int_0^x |dJ^q(x)| < 1$ $< \infty$. BORWEIN [1] has shown that the method (J,q) is regular if and only if $q(x) \to \infty$ as $x \to r$ —. BORWEIN [1, 2, 3] considered the inclusion relati- ^{6 -} L'analyse numérique et la théorie de l'approximation - Tome 9, No. 2. 1980. ons between (J, p) and (J, q) methods of summability. Das [7] has obtained inclusion relation between |J, p| and |J, q| methods. As well-known particular cases of the (J, q) method, we have the Abel method (A) when $q_n = (n+1)^{-1}$ (see [9, 5], the method A_{α} , when $q_n =$ $=\binom{n+\alpha}{\alpha}$ (see [1, 5] (A₀ is the same as the Abel method) and the method B_{α} when $q_n = (\Gamma(n+\alpha+1))^{-1}$ (B₀ is the same as the Borel method) (see [9], p. 222). A real method of summation T is totally regular if $s_n \to s$ implies that T-limit of $s_n \to s$ for all finite and infinite s as $n \to \infty$. It is known that a necessary and sufficient condition for a real triangular matrix transformation to be totally regular is that it should be regular and positive (see [9], and [10] for a general result on the subject). Throughout the paper we shall use the following notations: For two summability processes A and B, A B will mean that all sequences (series) summable (A) are summable (B). c will denote the space of convergent sequences. $\Sigma_n a_n \in (A)$ will mean that the series $\Sigma_n a_n$ is summable by the method (A). If in this statement we replace (A) by c then it will mean that the series $\Sigma_n a_n$ is a convergent series. $\varepsilon_{n} \in (A, B)$ will stand for the statement that "summability (A) of Σa_n implies summability (B) of $\Sigma a_n \varepsilon_n$ ". 2. Eventhough for a regular (J, q) method the summability field of (J,q) includes those of |J,q| and convergence, it is not clear if either of these include the other for general $\{q_n\}$. However, when $q_n = 1$, n = 1= 1, 2, ..., so that (J, q) is the Abel metod A, whittaker (16], by an example suggested by J. E. LITTLEWOOD showed that a Fourier series may converge at a point without being summable |A|, while PRASAD [14] constructed an example of a Fourier series which is summable |A| at a point without being convergent at that point. Thus we can conclude that the properties of convergence and summability $|A_{\alpha}|$ of infinite series are independent of each other atleast for $\alpha = 0$. This however raises the following problem: Does there exist any $\alpha > -1$ for which the properties of convergence and $|A_{\alpha}|$ are not independent of each other. We do not know the answer. If $= \{u_i\}_{i=1}^n \{u_i\}_{i=1}$ When $q_n = (n \mid)^{-1}$, so that (J, q) is the Borel method (B), we show that the properties of convergence and summability |B| for an infinite series are independent of each other. Our remak is supported by PROPOSITION 1. (i) There is a series summable |B| which is not conwe grosswith the bar shown that the metrody A is a rem (ii) There is a series which is convergent but not summable |B|. *Proof.* (i). Consider the series for which the nth partial sum is $(-1)^n$. This series is not convergent but its Borel transform B(x) =ell he the following theorems $= e^{-x} \sum_{n=0}^{\infty} (-1)^n x^n/n! = e^{-2x} \in BV [0, \infty)$. Thus the series is summable |B|. (ii) Let $a_n = 0$ (n = 0), and $a_n = (\sin nt)/n$ (n = 1, 2, ...). The series $\Sigma a_{\cdot \cdot}$ converges for all t. After simplification it can be seen that if this series were summable |B| for t = v then the integral (2.1) $$I = \int_{n=0}^{\infty} \left| e^{-x} \sum_{n=0}^{\infty} (x^n \sin(n+1)y)/(n+1)! \right| dx$$ will be convergent. Denoting the term inside the modulus sign by K(x, y)we have $$k(x, y) = \operatorname{Im} \left\{ e^{-x} \sum_{n=0}^{\infty} \left(x^n e^{i(n+1)y} / (n+1)! \right) = \right.$$ = $x^{-1} e^{-2x \sin^2 y/2} \sin(x \sin y) - x^{-1} e^{-x}.$ Thus Thus $$I \ge \int_{0}^{\infty} x^{-1} e^{-x} dx - \int_{0}^{\infty} |x^{-1} e^{-2x \sin^{2} y/2} \sin(x \sin y)| dx.$$ Choose $\delta > 0$ so small that $\sin (x \sin y)$ is non-negative. Then the second integral of (2.2) is not greater than $$\sin y \int_{0}^{\delta} \{e^{-2x \sin^{2} y/2} \sin (x \sin y) / x \sin y\} dx + \int_{\delta}^{\infty} x^{-1} e^{-2x \sin^{2} y/2} dx =$$ $$= O\left(\int_{0}^{\delta} e^{-2x \sin^{2} y/2} dx\right) + O\left(\delta^{-1} \int_{\delta}^{\infty} e^{-2x \sin^{2} y/2} dx\right) = O((\sin^{2} y/2)^{-1}).$$ Choosing y to be different from an even multiple of π , we have the above integral bounded. But the divergence to infinity of the first integral of (2.2) shows that I is divergent. Hence we establish the assertion. 3. In view of § 2 a natual question is to obtain necessary and sufficient conditions on a sequence $\{\varepsilon_n\}$ such that $\sum a_n \varepsilon_n$ is either summable | B| or $|A_{\alpha}|$ $(\alpha > -1)$ whenever Σa_n is a convergent series. Along this line is the following result: THEOREM A [15], $$\varepsilon_n \in (c, |A|)$$ if and only if $$(3.2) \Sigma \mid \varepsilon_n \mid n^{-1} < \infty.$$ Terit ambivous We shall first obtain ε_n such that $\varepsilon_n \in (c, |J, q|)$ and then obtain results for $|A_{\alpha}|$ and |B| by assigning particular values to q_n . Our results will be the following theorems: THEOREM 1. Let $q_n \geqslant 0$ and (J, q) method be totally regular. Then $\varepsilon_n \in$ $\in (c, |J, q|)$ only if = u is the view 0 = u. One so that (u) (3.3) with It that represents $$\sum |\triangle \varepsilon_n| < \infty$$, is talk. The representation and and hold, where (3.5) $$\kappa_n = \int_0^r \left\{ \frac{d}{dx} \left(x_n / q(x) \right) \varphi(x) \right\} dx$$ for every measurable, essentially bounded real function $\varphi(x)$. THEOREM 2. Let $q_n \geqslant 0$. Then the sufficient conditions for $\sum a_n \in \mathbb{R}$ $\in |J, q|$ whenever $s_n \equiv \sum_{k=0}^{n} a_k = O(1)$ are (3.3) and $$(3.6) \Sigma |\varepsilon_n|q_n|\psi_n| < \infty,$$ where (3.7) $$\psi_n = \int_0^{\infty} \frac{d}{dx} \left| \left(x^n / q(x) \right) \right| dx.$$ Remark. x_n of (3.5) always exists for $q_n \ge 0$ (see [8]). 4. We shall need the following lemmas: LEMMA 1 ([6], lemma 8). If $\Sigma g_n(x)s_n$ converges for 0 < x < r and its sum tends to a limit as $x \to r - 0$ whenever s_n is convergent, then there are numbers M, X such that $\Sigma |g_n(x)| \leq M$ for X < x < r. LEMMA 2 ([13], see also [15]). If a sequence $\{p_n\}$ of elements in a Banach space B has the property that there is a number H such that $\left\|\sum_{n=0}^{\infty} \pm p_n\right\| \leq H$ for each k and every set of signs \pm , then $\sum f(p_n) \mid < \infty$ for every linear func- LEMMA 3. Let $q_n \ge 0$ and (I, q) method be totally regular. Then $\sum a_n \le c$ and $\Sigma a_n \varepsilon_n \in (J, q)$ implies $\varepsilon_n = O(1)$. *Proof.* If under the hypotheses of the lemma ε_n is not bounded, then $\limsup |\varepsilon_n| = +\infty$. Then there exists a sequence of positive non-decreasing sequence of positive integres n_{ν} , $\nu = 1, 2, \ldots$ such that $|\varepsilon_{n_{\nu}}| > \nu^2$. Choose a_n such that $a_n = 0$ $(n \neq n_{\nu})$ and $a_n = \nu^{-2} \operatorname{sgn}^{-1} \varepsilon_{n_{\nu}} (n = n_{\nu})$. Thus $\Sigma |a_n| \leqslant \sum_{\nu=2} \nu^{-2} < \infty$. But when $n = n_{\nu}$, $a_n \varepsilon_n = a_{n\nu} \varepsilon_{n\nu} = \nu^{-2} |\varepsilon_{n\nu}| > 1$, and so the series $\sum a_n \varepsilon_n$ diverges to $+\infty$. Since (J,q) is assumed to be a totally a regular method $\sum a_n \varepsilon_n$ is non-summable (J, q). Thus $\varepsilon_n = O(1)$. LEMMA 4. Let $q_n \ge 0$ and (J, q) method be totally regular. Then $\varepsilon_n \in$ \in (c, (I, q)) only if (3.3) holds. *Proof.* Writing J(x) for the (J, q) mean of the series $\sum a_n \varepsilon_n$ we have (4.1) The property of $$f(x) = q_s(x) \neq q(x)$$, which is $f(x) = q_s(x) \neq q(x)$. $$q_s(x) = \sum_{n=0}^{\infty} q_n x^n \sum_{k=0}^{n} a_k \varepsilon_k.$$ Since, by hypothesis and Lemma 3, a_n is convergent and $\varepsilon_n = O(1)$, we have the with him with a control of the second and the second are the second and the second are the second and the second are a $$\sum_{n=0}^{\infty} \left| q_n x^n \sum_{k=0}^n a_k \varepsilon_k \right| \stackrel{\text{co}}{=} O\left(\sum_{n=0}^{\infty} n q_n |x|^n \right) = O(1),$$ whenever |x| < r since the radius convergence of $\sum q_n x^n$ is r. Thus by change of order of summation in (4.2), we obtain $$(4.3) q_s(x) = \sum_{k=0}^{\infty} a_k \varepsilon_k \sum_{n=k}^{\infty} q_n x^n.$$ By Abel's transformation $$(4.4) q_s(x) = \sum_{n=0}^{\infty} s_k \triangle_k \left(\varepsilon_k \sum_{k=0}^n q_n x^k \right)$$ provided that $$\lim_{m \to \infty} \left(s_m \varepsilon_m q_m x^m \right) / q(x) = 0.$$ But by hypothesis s_n converges, by Lemma 3, since $\varepsilon_n = O(1)$ and since $\Sigma q_n x^n$ is convergent for $0 \le x < r$, $q_n x^n \to 0$ as $n \to \infty$. Hence (4.5) holds and therefore (4.4) is valid. Now write (4.1) in the from $$(4.6) J_s(x) = \Sigma g_k(x) s_k$$ where $$g_k(x) = (q(x))^{-1} \triangle_k \left(\varepsilon_k \sum_{n=k}^{\infty} q_n x^n \right).$$ Since, by hypothesis, I(x) exists for $0 \le x < r$ and $I(x) \to a$ limit as $x \to x < r$ $\rightarrow r$ — whenever $\{s_n\}$ converges, by Lemma 2, there exists numbers M and X such that (4.8) $$\Sigma_k |g_k(x)| \leq M$$ (for $X < x < r$ and for all n). It follows that $$\lim_{x \to \tau^-} \sup \Sigma |g_k(x)| \leq M.$$ But since, as $x \to r$, $\sum q_n x^n \to \infty$, and so $\sum_{n=0}^{\infty} q_n x^n/q(x) = 1 - \left(\sum_{n=0}^{\kappa-1} q_n x^n/q(x)\right)$ which tends to 1, it follows from (4.7) that $g_k(x) \to \triangle_k \varepsilon_k$. Hence $$(4.10) |\triangle_k \varepsilon_k| = \sum_k |\lim_{x \to r} g_k(x)| \leq \liminf_{x \to r} |g_k(x)| \leq \limsup_{x \to r} |g_k(x)| \leq M,$$ by (4.9). **5.** Proof of theorem 1. Since $|(J,q)| \subset (J,q)$, necessity of (3.3) follows from Lemma 4. In proving the necessity of (3.4) we shall use notations of Lemma 4 for J(x) etc. without restatement. Since I(x) exists for $0 \le x < r$ and so is differentiable in [0, r), we obtain by straightforward calculation (5.1) $$J'(x) = -\sum_{n=0}^{\infty} a_n \varepsilon_n \frac{d}{dx} \left(\sum_{k=0}^{n-1} q_k x^k / q(x) \right),$$ By Abel's transformation. $$(5.2) J'(x) = -\sum_{n=0}^{\infty} s_n \triangle_n \left(\varepsilon_n \frac{d}{dx} \left\{ \left(\sum_{k=0}^{n-1} q_k x^k \right) / q(x) \right\} \right)$$ provided that (5.3) $$\lim_{m\to\infty} s_m \, \varepsilon_{m+1} \, \frac{d}{dx} \left\{ \left(\sum_{k=0}^m q_k x^k \right) / q(x) \right\} = 0.$$ But since $\{s_n\} \in l_{\infty}$, $\{\varepsilon_n\} \in l_{\infty}$ and $\frac{d}{dx} \left\{ \sum_{n=0}^{m} q_n x^n / q(x) \right\} \to 0$ $$\to \{(q'(x)q(x) - q'(x)q(x))/(q(x))^2\},$$ as $m \to \infty$, for $0 \le x < r$, condition (5.3) is satisfied. Now from (5.2), we $$(5.4) J'(x) = -\sum_{n=0}^{\infty} s_n \varepsilon_n q_n \frac{d}{dx} (x^n / q(x)) - s_n \triangle \varepsilon_n \frac{d}{dx} \left(\left(\sum_{k=0}^n q_k x^k \right) / q(x) \right) \equiv$$ $$\equiv J_1(x) + J_2(x).$$ It con be checked that (5.5) $$\frac{d}{dx} \left(\left(\sum_{k=0}^{n} q_k x^k \right) / q(x) \right) = \left(\sum_{k=0}^{\infty} V_k x^k \right) / q(x) \right)^{s}$$ where 7 $$V_{k} = q_{k}q_{1} + 2q_{2}q_{k-1} + \dots + nq_{n}q_{k-n+1} - (k+1)q_{k+1}q_{0} - kq_{k}q_{1} - \dots - (k-n+1)q_{n}q_{k-n+1} = -(k+1)q_{k+1}q_{0} - (k-1)kq_{k}q_{1} - \dots - (k-2n+1)q_{k-n+1}q_{n},$$ it being understood that $q_r = 0$ if r is a negative integer. Now we separately consider the cases $0 \le k \le n$, $n < k \le 2n$, k > 2n. In each case it can be checked that $V_k \leq 0$ for all n and for $0 \leq x < r$ whenever $q_n \geq 0$ (see McFadden [11]). Hence it follows from (5.5) that (5.6) $$\int_{0}^{r} \left| \frac{d}{dx} \left(\left(\sum_{k=0}^{n} q_{k} x^{k} \right) / q(x) \right) \right| dx = - \left(\sum_{k=0}^{n} q_{k} x^{k} \right) / q(x) = 1,$$ since $q(x) \to \infty$ as $x \to r$. Now from (5.4), we have by (5.6) $$\begin{cases} \int_{0}^{r} |f_{2}(x)| dx \leq \sum_{n=0}^{\infty} |s_{n}| |\triangle \varepsilon_{n}| \int_{0}^{r} \left\{ \frac{d}{dx} \left(\sum_{k=0}^{n} q_{k} x^{k} \right) / q(x) \right\} \right\} dx = \\ = \sum_{n=0}^{\infty} |s_{n}| |\triangle \varepsilon_{n}| \leq K \sum_{n=0}^{\infty} |\triangle \varepsilon_{n}| \leq K, \end{cases}$$ by (3.3) and the fact that $s_n = O(1)$. re the part that I have only to the name of the Land A. For the second of o We are given $\int |J'(x)| dx < \infty$. Since $\int |J_2(x)| dx < \infty$, it follows from (5.4) that $$\int_{0}^{r} |J_{\mathbf{I}}(x)| dx < \infty,$$ which is the same as $$\int_{0}^{r} \left| \sum_{n=0}^{\infty} s_{n} \varepsilon_{n} q_{n} \{ (d/dx) (x^{n}/q(x)) \} dx < \infty, \right|$$ 8 241 for every convergent sequence s_n . But (5.7) holds (see [15], lemma 2) if and only if (5.8) $$\int_{0}^{r} \left| \sum s_{n} \varepsilon_{n} q_{n} \frac{d}{dx} \left(x^{n} / q(x) \right) dx \right| \leq H \overline{bd} |s_{n}|$$ for some absolute positive constant H. In particular, (5.8) implies that (5.9) $$\int_{0}^{r} \left| \sum_{n=0}^{k} \pm \varepsilon_{n} q_{n} \frac{d}{dx} \left(x^{n} / q(x) \right) \right| \leq H$$ for each k and every sequence of signs. Hence, by Lemma 3, we have (5.10) $$\sum_{n=0}^{\infty} |\varepsilon_n| q_n \left| \int_0^{r} \varphi(x) \frac{d}{dx} (x^n/q(x)) \right| dx < \infty$$ for every bounded, real function $\varphi(x)$. This completes the proof of Theorem 1. Proof of theorem 2. We are given that $s_n = O(1)$. Since $$\sum_{k=0}^{n} a_k \, \varepsilon_k = \sum_{k=0}^{n-1} \triangle \varepsilon_k s_k + \varepsilon_n s_n, \text{ we have } \sum_{k=0}^{n} a_k \, \varepsilon_k \leqslant \sup |s_k| \sum_{k=0}^{n-1} |\triangle \varepsilon_k| +$$ + O(1) = O(1), so that $q_s(x) = O(1) \sum_{n=0}^{\infty} q_n x^n$. Hence $q_s(x)$ exists for |x| < r, Since $q(x) \neq 0$ for |x| < r, it follows that J(x) exists for |x| < r as a power series expansion and therefore J(x) is differentiable in [0, r). Now we have $J'(x) = J_1(x) + J_2(x)$ as in (5.4). But whenever $\Sigma |\triangle \varepsilon_n| < \infty$, we have, as before $\int_0^r |J_2(x)| dx < \infty$. We have only to show that $\int_0^r |J_1(x)| dx < \infty$. Now $$\int_{0}^{r} |J_{1}(x)| dx \leq \sum_{n=0}^{\infty} |s_{n} \varepsilon_{n} q_{n}| \int_{0}^{r} \left| \frac{d}{dx} (x^{n}/q(x)) \right| dx \leq k \sum_{n=0}^{\infty} |\varepsilon_{n}| q_{n} \psi_{n} \leq k.$$ This completes the proof of Theorem 2. **6.** In this section we apply Theorem 1 and Theorem 2 to obtain results for summability method $|A_{\alpha}|$. In this case r = 1, $q(x) = (1-x)^{-\alpha-1} \equiv \sum_{n=0}^{\infty} A_n^{\alpha} x^n$. THEOREM 3. Σa_n is convergent implies $\Sigma a_n \varepsilon_n \in |A_\alpha|$ $(\alpha > -; 1)$ if and only if (3.1) and (3.2) hold. ON SOME SEQUENCE TO FUNCTION TRANSFORMATIONS Proof. Sufficiency. In this case $$\frac{d}{dx}(x^n/q(x)) = (1-x)^{\alpha}x^{n-1}((1-x)n-x(1+\alpha)).$$ Thus $$\frac{d}{dx}(x^n/q(x)) = \begin{cases} > 0 \ (x \le n/(\alpha + 1 + n); \\ < 0 \ (x > n/(\alpha + 1 + n). \end{cases}$$ If we write f(x) for $(x^n/q(x))$, we have, $$\int_{0}^{1} \left| \frac{d}{dx} \left(x^{n} / q(x) \right) \right| dx = \int_{0}^{n/(n+\alpha+1)} \frac{d}{dx} \left(x^{n} / q(x) \right) dx - \int_{n/(n+\alpha+1)}^{1} \frac{d}{dx} \left(x^{n} / q(x) \right) dx =$$ $$= f(n/(\alpha+1+n)) - f(0) - f(1) + f(n/(\alpha+1+n)) = 2f(n/(\alpha+1+n)) = 0$$ $$= (n/(\alpha+1+n))^{n} (\alpha+1)^{\alpha+1} (n+\alpha+1)^{-\alpha-1} = O(n^{-\alpha-1}).$$ Hence from Theorem 2 we obtain $$\sum_{n=0}^{\infty} |\varepsilon_n| q_n \psi_n = \mathcal{O}\left(\sum |\varepsilon_n|/n^{\alpha+1}\right) A_n^{\alpha}\right) = \mathcal{O}\left(\sum n^{-1} |\varepsilon_n|\right) = \mathcal{O}(1),$$ by the hypothesis. Necessity. We first observe that we do not impose any additional restriction by assuming that (3.4) holds for every bounded complex function $\varphi(x)$. We next set $\varphi(x) = (1-x)^i$ $(i=\sqrt{-1})$ in (3.4). Then the integral is given by $$\left| \int_0^1 (1-x)^i \frac{d}{dx} \left((1-x^n)^{\alpha+1} x^n \right) dx \right| = \left| i \int_0^1 (1-x)^{\alpha+i} x^n dx \right| =$$ $$= \left| i \Gamma(1+\alpha+i) \Gamma(n+1) / \Gamma(n+2+\alpha) \right| \approx (1+i+\alpha) |n^{\alpha+1}.$$ Hence $$\left| \Sigma_n \left| \varepsilon_n \right| A_n^{\alpha} \right| \int_0^1 (1-x)^{i} \frac{d}{dx} \left\{ (1-x)^{\alpha+1} x^n \right\} dx \right| < \infty \quad \text{i.e. } \Sigma_n (\left| \varepsilon_n \right| /n) < \infty$$ Thus the proof of the theorem is complete. 10 11 7. In this section we apply Theorem 1 and Theorem 2 to absolute Borel summability. In this case $q(x) = e^x = \sum_{n=0}^{\infty} (x^n/n!)$, and $r = \infty$. Our result is the following: THEOREM 4. $\varepsilon_n \in (c, |B|)$ if and only if $$(7.1) \Sigma_n |\triangle \varepsilon_n| < \infty.$$ and (7.2) $$\Sigma_n\{|\varepsilon_n|/n^{\frac{1}{2}}\} < \infty.$$ *Proof.* Let $f(x) = x^n/q(x) \equiv e^{-x}x^n$. Hence $f'(x) = -e^{-x}x^n + nx^{n-1}e^{-x} = e^{-x}x^{n-1}(n-x)$. So (7.3) $$f'(x) = \begin{cases} \ge 0 \ (x \le n); \\ < 0 \ (x > n). \end{cases}$$ Sufficiency. In view of (7.3) we find that $$\int_{0}^{\infty} |f'(x)| dx = \left(\int_{0}^{n} + \int_{n}^{\infty}\right) |f'(x)| dx = \int_{0}^{n} f'(x) dx - \int_{n}^{\infty} f'(x) dx =$$ $$= f(n) - f(0) - f(\infty) - f(n) = 2f(x) = 2n^{n}e^{-n},$$ $\operatorname{since} f(0) = f(\infty) = 0$. Now $$\Sigma_n |\varepsilon_n| q_n \psi_n = 2 \Sigma_n (|\varepsilon_n| n^n e^{-n}/n) \cong \Sigma_n (|\varepsilon_n| / n^{\frac{1}{2}}) < \infty.$$ Necessity. $x_n = \int_0^\infty f'(x) \varphi(x) dx$ Choose $\varphi(x) = 1$ $(x \le n)$, and $\varphi(x) = -1$ (x > n). Then $$\varkappa_{n} = \int_{0}^{\infty} f'(x)\varphi(x)dx = \left(\int_{0}^{n} - \int_{n}^{\infty}\right) f'(x)\varphi(x)dx = 2n^{n}e^{-n}.$$ Substituting the value in (3.4) we see the necessity part of (7.2). **8.** If one sets $q(x) = \log(1/(1-x))$ and r = 1 then (J, q) method reduces to the logarithmic method (L) (see [4]). Considering a series $\sum a_n$ such that $F(x) \equiv \sum_n a_n x^n$ is $e^{-(1+x)}$, it is easy to see that F(x) is of bouded variation over (0, 1) and thus making $\sum_n a_n \in |A|$. However this series is not summable (C, k) for any $k \ge 0$ (see [9], p. 109). Since $|A| \subset |L|$ (see [12], p. 453) not all series |L| are Cesàro summable and a fortiori convergent. This raises the following problem: PROBLEM. Does there exist a series which is convergent but is not summable |L|? We feel that the answer will be in the affirmative. Concerning the convergence factors for series summable L we conjecture the following: COOJECTURE. $\varepsilon_n \in (c, |L|)$ if and only if $$|\Sigma_n| \triangle \varepsilon_n| < \infty \text{ and } |\Sigma_n| |\varepsilon_n| / (n \log n) < \infty.$$ ## REFERENCES [1] Borwein, D., On method of summation based on power series. Proc. Royal Soc. Edinburgh, 64, 342-349 (1957). [2] -, On methods of summation based on integral functions. Proc. Cambridge Phil. Soc., 55, 23-30 (1959). [3], On methods of summability based on integral functions. Proc. Cambridge Phil. Soc., 56, 123-131 (1960). [4] -, A logarithmic metohod of summability. J. London Math. Soc., 33, 212-220 (1958). [5] -, On a scale of Abel type summability methods. Proc. Cambridge Phil. Soc., 53, 318-322 (1957). [6] Bosanquet, L. S., Note on Convergence and Summability Factors, (II). Proc. London Math. Soc., 50, 295-304 (1948). [7] Das, G., On some methods of summability. Quarterly J. Math., 17, 244-356 (1966). [8] -, Inclusion Theorems for an Absolute Method of Summability, Jour. London Math, Soc., 6, 467-472 (1973). [9] Hardy, G. H., Divergent Series. (Oxford, 1949). [10] Hurwitz, H. H., Total Regularity of General Transformations. Bull. Amer. Math. Soc., 46, 833-837 (1940). [11] Mc Fadden, L., Absolute Nörlund Summability. Duke Math. Jour., 9, 168-208 (1942). [12] Mohanty, R., and Patnaik, J. N., On the Absolute L Summability of a Fourier Series. J. London Math. Soc., 43, 452-456 (1968). [13] Orlicz, M. W., Beiträge zur Theorie der Orthogonalentwicklungen II. Studia Math, 1, 241-255 (1929). [14] Prasad, B. N., The Absolute Summability (A) of a Fourier Series. Proc. Edin. Math, Soc., 2, 129-134 (1929). [15] Tatchell, J. B., A Note on a Theorem By Bosanquet. J. London Math. Soc., 29, 203-211 (1954). [16] Whittaker, J. M., The Absolute Summability of Fourier Series. *Proc. Edin.* Math. Soc., 2. 1-5 (1930). American University of Beirut, Beirut, Lebanon and University of California, Santa Barbara, California, U.S.A. Received 17. IV. 1980