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1. In this paper we characterize determining sets and Korovkin sets
for finitely defined operators, in terms of an appropriate concept of ,,quasi
peak point” (see BERENS—LORENTZ [1]). The sets of this type have been
i[l';\'TEStigated by smasukIN [8], Miccuriir [5], [6], cavArRETTA [3], RUSK

Let Q be a compact metric space. &, will be the cone of positive linear
operators on C(Q), and £, will be the cone of positive linear functionals
on C(Q). Let % be a positive integer. We define @, to be the set of func-
tionals p in €, for which the support of the representing Radon measure
contains a number of points no greater than #.

For g in Q let :;; be the evaluation functional.
If T is a bounded linear operator on C(Q), let T* denote the adjoint
of T. &, will be the set of finitely defined (of order #) positive linear ope-

rators, ie. T is in &, if for every ¢ in Q, T*q is in 9,,.

A subspace X of C(Q) is said to be a Korovkin set for an operator T
in §, if for any sequence of operators (7,) in g, the convergence of
T,f to Tf in the uniform norm for all fin X implies the convergence of
T.f to Tf for all fin C(Q).

We say that the subspace X is a determining set for T if for any S
in &, the equality Sf = 77 for all fin X implies S = T.

The corresponding concepts of Korovkin set and determining set
for positive linear functionals are defined in the obvious way.

We use the following result (see [4], [6], [7]).

THEOREM 1. A subspace X of C(Q) is a Korovkin set Jor an operator

T in §; if and only if X is a determining set for T */g\ Jor all g in Q.
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A point p in @ is said'to be a quasi peak point for the s.,ubspage
X if for any 0 < ¢ < 1 and any neighborhood U of p there exists g in
X such that
(i) glg) = 0 for all ¢ in Q;
i) g(p) <e; _
Eiii) g(g) = 1 for all ¢ in QN U.
For fin C(Q) and ¢ in Q let us denote
fxlg) = inf {g(g) :f < g = X};
Jxlg) =sup {g(9):f > & = X}
Let X be the Choquet boundary of X, ie. the set of all ¢ in Q such

that X is determining for g¢. 1
1 Tor the following result the reader is referred to [1], [6]. e
rusoreM 2. Let X be a subspace of C (Q). The following are equivalent:

(a) X is a Korovkwn set for the identity operator

b) X =0Q; ' .

Ec)) every q in Q) is @ quast peak point for X ;

(d) fy = fx for all f in C(Q).

2. vf‘gt # De a positive integer and suppose car(f(i 0 5)% o 1.1We sayzr
that X is a W -subspace of C(Q) if for any system (q,, V), 2 = % -, "
wﬁerc g, are distinct points in Q and V, is an open neighborhood of
q;, and fnor any e > 0 there exists g in X such that:

(1) glg) = 0 for all ¢ in @,

(2J g(‘_?,')<5, 1::1,.‘.,?‘&,' )
3) glg) =1 for all ¢ in Q@ LIJ V..

Let X be a subspace of C(Q), fin C(Q) and p in €. Let us denote
wo(f) = inf {plg)  f < g = X} ,

e U)’FI-[J:?()R:E‘,M 3. The following are equivalent :

(a) X is a Korovkin set for all p.an D,

(b) X is a determining set for atl g in Dy .

(©) wx(f) = w(f) for ail p in D, and all fin C(Q);

(d) X 15 a W,-subspace; '
(e) X is a Korovkin set for all T in &y,
(f) X is a determining sel for all T in &,

Proof. (a) = (b) is obvious. _ _

(b)o=j>r {c()) Let()i)f be a determining set for all p in D,. Tet w be in D,
and fin C(Q). Then X contains a strictly positive function (see FERGUSON,
rusk [4]). Lemma 1.3 [2] is now appliquable, and

uelf) = sup {u(f) vis in €, vy = plg} = sup ) 1y =} = wl)

isti i i Vy ..., Vs, open
c) = (d). Let g5, -2 qn be distinct points in Q, Vg, ;
neiglfborhoods for these points, and ¢ > 0. By the Urysohn lemma there
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exists f in C(Q) such that :

Wo0<f<t;

() /i) — 0

(6) flg) = 1, forallging ) ¥,
1

Defi ke, m o
ef1’r1e u | Zpg,.. Thus pis in 9, and by (c), wy(f) = w(f). Hence
there exists g 11‘1 X, 8 = f, u(g — uf) <e Therefore g 20, g(g) > 1 for
all ¢ in Q™ Llj V. From p(f) = L:f(q%) = 0 we obtain p(g) < ¢, hence

gg;) < e i=1, ..., n Therefore X is a W ,—subspace.
(d) = (b). Let p be in @, and v be in £, such that w(f) = v(f) for all

. N
fin X0 If g — 12“191' where 4, are nonnegative real numbers and g, are

distinct points in , we show that supp v C {q1, - -, gu}-
. Let y be in suppv \ {g,, ..., 9»}, and let V,, V,, ... V, be disjoint
neighborhoods for v, ¢,/ ... ¢,. We denote the representing Radon measure

of v also by v. Since y < supp v we have v(V,) = ¢ > 0.
By (d), for any e > 0 there exists g in X such that £ 20, 84) <se,
t=1,...,m and g(g) > 1 for all g in QN UV,
. . 1
If ¢ is in V, then g(q) > 1. Therefore

0<es(gdv<fgd=vg) =ule) =D ael) < e a.
o) ; i T
If ¢ >0, we obtain 0 < ¢ <0, a contradiction. Hence vy — }L‘:b- ;]\-,
b, 20 :

Tet guiy bein @ ™\ {g1, ..., ¢,}, and let V; be a neighborhood for g,
n+1 v

t=2,....n+ 1 such that ¢, is not in U V.. For any ¢ > 0 there exists
. . 2
gin X, g >0, 8(9,) <e, =2 ...,n+1 £(¢1) > 1. Therefore

0 = p(g) — v(g) = (a, — b)elg) + EZD (a; — b,) g(9.)

?

lay — &) < |ay — bilglg:) = ; (¢, — b,) &(g,) | < 32 la; — b,l.
)

If ¢ -0 we obtain a, = b,. A similar argument shows that a, =8, ¢ =

=2, ..., n and hence v = p.
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i i hat
. Let w be in 9, and let (n,) be a sequence in L. su_ch t
lim (C() r:(a&(ggﬁinuthe uniform norm, for all g in X. Let f be in C(Q).
By ‘Zg)g px(f) = u(f). For any e > 0 there exists g in X such that

From py(—f) :\ME:‘J[) it follows that there exists %2 in X such that
() > —f;
(10) wlh) = w(—f) < =
Hence —h < f <g ie =) < wm(f) < ml8)
obtain now

w(f) — e < —p(h) = lim (—p,(h)) < Hminf p,(f) < Hmsup p,(f) <
< lim p(g) = w(g) < u(f) + =
Thus lim p,(f) = r(f) for all f in C(Q).

f) is obvious. ]
g)) : ((b>).15Let u be in @, and let p, be in £, such that u,(g) = p(g)
for all g in X. We define the operators T and 7', on C(Q) by T(f) =
= u(f) + 1, T1(f) = w.(f) - 1, where 1 is the constant function. Then T\,

isin &, and T*g: p for all ¢ in Q, hence T is in &,. Moreover, T(g) =
= T(g) for all g in X. By (f), T, = 7, and then p; = w.

(b) = (e) is a consequence of theorem 1. _ ) )

Remark. If X is an #»tt order Korovkin space (see CAVARETTA
[3]), then X is a W,—subspace. Hence from theorem 3 ((d) = (e)) we ob-
tain Cavaretta’s theorem 2 [3‘3 | e

3. Let Q be a compact interval or a circle. -

TH]?ORE% 4. If X is'a W, -subspace of C(Q) and if dim X = 2n + 1,

) Cebisev subspace.

then Iggo;;. %Ve gem'ploy thf same argument as MICCHELILI [5, theorem 4].

X be the linear span of g4, g1, ... Son- ' .
W Sup;?ose eX is notpa Cebi§e0v slubspace. Then there exist 2% - 1 dls—_
tinct points ¢, ..., gz, in Q, and 2n# 4 1 real numbers a,, ..., dg, not
all equal to zero, such that

(1) 2@&m=a

Put M = {j:a; > 0}. Multiplying, if necessary, (11) by —1, we may
assume card M < #. Define the functionals p, v by

5 = i = - — a-A~_
P':;L/:J“J'Qi (w=0if M =¢), v j;{ 545

i = ' in X. Moreover, u is in 9,
From (11) we obtain p(g) = v(g) for all gin :
and v is in (-‘3+-) By theorem 3, X is determining for p, hence p =v. T:;(se
contradicts the assumption that q,, ..., ¢, are distinct and a,, ..., g,
not all equal to zero.

From (8) and (10) we

1=0,1,...,2%n

|
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