L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 10, No 1, 1981, pp. 89-93 Ind thome 7.

O RE E (In 20) O & Hely fit

 (\overrightarrow{u}) , $g(y) \ge 1$ for all g in Q = U.

DETERMINING SETS FOR FINITELY DEFINED OPERATORS TO MINISTER DE MANAGEMENT DE MANAG

Y. (1) - sup (20) 1/4 | 1 - 2 - X

by

ION RAŞA

(Cluj-Napoca) 1. In this paper we characterize determining sets and Korovkin sets for finitely defined operators, in terms of an appropriate concept of ,,quasi peak point" (see BERENS-LORENTZ [1]). The sets of this type have been investigated by SHASHKIN [8], MICCHELLI [5], [6], CAVARETTA [3], RUSK

Let Q be a compact metric space. \mathcal{F}_+ will be the cone of positive linear operators on C(Q), and \mathfrak{L}_+ will be the cone of positive linear functionals on C(Q). Let n be a positive integer. We define \mathfrak{D}_n to be the set of functionals μ in \mathfrak{L}_{+} for which the support of the representing Radon measure

For q in Q let \hat{q} be the evaluation functional.

If T is a bounded linear operator on C(Q), let T^* denote the adjoint of T. \mathcal{F}_n will be the set of finitely defined (of order n) positive linear ope-

rators, i.e. T is in \mathcal{F}_n if for every q in Q, $T*\hat{q}$ is in \mathfrak{D}_n .

A subspace X of C(Q) is said to be a Korovkin set for an operator Tin \mathcal{F}_+ if for any sequence of operators (T_n) in \mathcal{F}_+ the convergence of $T_n f$ to T f in the uniform norm for all f in X implies the convergence of $T_n f$ to T f for all f in C(Q).

We say that the subspace X is a determining set for T if for any S in \mathcal{S}_+ the equality Sf = Tf for all f in X implies S = T.

The corresponding concepts of Korovkin set and determining set for positive linear functionals are defined in the obvious way.

We use the following result (see [4], [6], [7]). THEOREM 1. A subspace X of C(Q) is a Korovkin set for an operator T in S_+ if and only if X is a determining set for $T^*\widehat{q}$ for all q in Q.

NOTE OF THEOREM IN SCAPPING TO THE A point p in Q is said to be a quasi peak point for the subspace X if for any $0<\varepsilon<1$ and any neighborhood U of p there exists g in

X such that

90

(i) $g(q) \ge 0$ for all q in Q;

(ii) $g(p) < \varepsilon$;

(iii) $g(q) \ge 1$ for all q in $Q \setminus U$.

For f in C(O) and g in O let us denote

$$\overline{f}_X(q) = \inf \{ g(q) : f \leq g \in X \} ;$$

$$f_X(q) = \sup \{g(q) : f \geqslant g \in X\}.$$

Let ∂X be the Choquet boundary of X, i.e. the set of all q in Q such that X is determining for \hat{q} . ANOTABIGO

For the following result the reader is referred to [1], [6].

THEOREM 2. Let X be a subspace of C(Q). The following are equivalent:

(a) X is a Korovkin set for the identity operator;

(b) $\partial X = Q$;

(c) every q in Q is a quasi peak point for X;

(d) $f_X = \overline{f_X}$ for all f in C(Q).

2. Let n be a positive integer and suppose card $Q \ge n + 1$. We say that X is a W_n -subspace of C(Q) if for any system (q_i, V_i) , $i = 1, \ldots, n$, where q_i are distinct points in Q and V_i is an open neighborhood of q_i , and for any $\epsilon > 0$ there exists g in X such that:

(1) $g(q) \ge 0$ for all q in Q; $\frac{1}{2}$ some some less mass and 0 tool

(2) $g(q_i) < \varepsilon$, $i=1,\ldots,n$ in the same of the x form x (1)) x for the x

(3) $g(q) \ge 1$ for all q in $Q \setminus \bigcup_{i=1}^{n} V_i$.

Let X be a subspace of C(Q), f in C(Q) and μ in \mathfrak{L}_+ . Let us denote $\mu_X(f) = \inf \{ \mu(g) : f \leqslant g \leqslant X \}.$ THEOREM 3. The following are equivalent:

(a) X is a Korovkin set for all μ in n, (a) X is a determining set for all μ in Dn;

(c) $\mu_X(f) = \mu(f)$ for all μ in \mathfrak{D}_n and all f in C(Q);

(d) X is a Wn-subspace;

(e) X is a Korovkin set for all T in Fn;

(f) X is a determining set for all T in Fn.

Proof. (a) \Rightarrow (b) is obvious.

(b) \Rightarrow (c). Let X be a determining set for all μ in \mathfrak{D}_n . Let μ be in \mathfrak{D}_n and \hat{f} in $C(\hat{Q})$. Then X contains a strictly positive function (see FERGUSON, RUSK [4]). Lemma 1.3 [2] is now appliquable, and

$$\mu_X(f) = \sup \{ v(f) : v \text{ is in } \mathcal{L}_+, \ v|_X = \mu|_X \} = \sup \{ v(f) : v = \mu \} = \mu(f).$$

(c) \Rightarrow (d). Let q_1, \ldots, q_n be distinct points in Q, V_1, \ldots, V_n open neighborhoods for these points, and $\varepsilon > 0$. By the Urysohn lemma there exists f in C(Q) such that:

(4) $0 \le f \le 1$; (5) $f(q_i) = 0, i = 1, ..., n$;

(6)
$$f(q) = 1$$
, for all q in $Q \setminus \bigcup_{i=1}^{n} V_i$.

Define $\mu = \sum_{i=1}^{n} \hat{q}_{i}$. Thus μ is in \mathfrak{D}_{n} and by (c), $\mu_{X}(f) = \mu(f)$. Hence there exists g in X, $g \ge f$, $\mu(g) - \mu(f) < \varepsilon$. Therefore $g \ge 0$, $g(q) \ge 1$ for all q in $Q \setminus \bigcup V_i$. From $\mu(f) = \sum f(q_i) = 0$ we obtain $\mu(g) < \varepsilon$, hence $g(q_i) < \varepsilon$, $i = 1, \ldots, n$. Therefore X is a W_n -subspace.

(d) \Rightarrow (b). Let μ be in \mathfrak{D}_n and ν be in \mathfrak{L}_+ such that $\mu(f) = \nu(f)$ for all f in X. If $\mu = \sum_{i=1}^{n} a_i \hat{q}_i$ where a_i are nonnegative real numbers and q_i are distinct points in Q, we show that supp $v \subset \{q_1, \ldots, q_n\}$.

Let y be in supp $v \setminus \{q_1, \ldots, q_n\}$, and let $V_y, V_1, \ldots V_n$ be disjoint neighborhoods for y, q_1, \ldots, q_n . We denote the representing Radon measure of ν also by ν . Since $y \in \text{supp } \nu$ we have $\nu(V_y) = c > 0$.

By (d), for any $\varepsilon > 0$ there exists g in X such that $g \ge 0$, $g(q_i) < \varepsilon$, $i = 1, \ldots, n$, and $g(q) \ge 1$ for all q in $Q \setminus \bigcup V_i$. If q is in V_y then $g(q) \ge 1$. Therefore

$$0 < c \leqslant \int_{V_y} g \, d\nu \leqslant \int_Q g \, d\nu = \nu(g) = \mu(g) = \sum_1^n a_i \, g(q_i) \leqslant \varepsilon \sum_1^n a_i.$$

If $\varepsilon \to 0$, we obtain $0 < c \le 0$, a contradiction. Hence $v = \sum b_i q_i$

Let q_{n+1} be in $Q \setminus \{q_1, \ldots, q_n\}$, and let V_i be a neighborhood for q_i , $i=2,\,\ldots\,n+1$ such that q_1 is not in $\bigcup V_i$. For any $\varepsilon>0$ there exists g in X, $g\geqslant 0$, $g(q_i)<arepsilon$, $i=2,\ldots,n+1$ $g(q_1)\geqslant 1$. Therefore

$$0 = \mu(g) - \nu(g) = (a_1 - b_1)g(q_1) + \sum_{i=1}^{n} (a_i - b_i) g(q_i)$$

$$|a_1 - b_1| \leqslant |a_1 - b_1| g(q_1) = \left| \sum_{i=1}^{n} (a_i - b_i) g(q_i) \right| \leqslant \varepsilon \sum_{i=1}^{n} |a_i - b_i|.$$

If $\varepsilon \to 0$ we obtain $a_1 = b_1$. A similar argument shows that $a_i = b_i$, i = $=2,\ldots,n$, and hence $v=\mu$.

(c) \Rightarrow (a). Let μ be in \mathfrak{D}_n , and let (μ_k) be a sequence in \mathfrak{L}_+ such that $\lim \mu_{k}(g) = \mu(g)$ in the uniform norm, for all g in X. Let f be in C(0). By (c), $\mu_X(f) = \mu(f)$. For any $\varepsilon > 0$ there exists g in X such that

(7) $g \geqslant f$;

92

(8) $\mu(g) - \mu(f) \le \varepsilon$. From $\mu_X(-f) = \mu(-f)$ it follows that there exists h in X such that (9) $h \ge -f$; (10) $\mu(h) - \mu(-f) \le \varepsilon$.

Hence $-h \le f \le g$, i.e. $-\mu_k(h) \le \mu_k(f) \le \mu_k(g)$. From (8) and (10) we obtain now

obtain now
$$\mu(f) - \varepsilon \leqslant -\mu(h) = \lim (-\mu_k(h)) \leqslant \liminf \mu_k(f) \leqslant \limsup \mu_k(f) \leqslant \lim \mu_k(g) = \mu(g) \leqslant \mu(f) + \varepsilon.$$

Thus $\lim \mu_k(f) = \mu(f)$ for all f in C(Q).

(e) \Rightarrow (f) is obvious.

 $(f) \Rightarrow (b)$. Let μ be in \mathfrak{D}_n and let μ_1 be in \mathfrak{L}_+ such that $\mu_1(g) = \mu(g)$ for all g in X. We define the operators T and T_1 on C(Q) by T(f) = $= \mu(f) \cdot 1$, $T_1(f) = \mu_1(f) \cdot 1$, where 1 is the constant function. Then T_1 is in \mathcal{F}_+ and $T^*q = \mu$ for all q in Q, hence T is in \mathcal{F}_n . Moreover, $T_1(g) =$ = T(g) for all g in X. By (f), $T_1 = T$, and then $\mu_1 = \mu$.

(b) \Rightarrow (e) is a consequence of theorem 1.

Remark. If X is an nth order Korovkin space (see CAVARETTA [3]), then X is a W_n -subspace. Hence from theorem 3 ((d) \Rightarrow (e)) we obtain Cavaretta's theorem 2 [3].

3. Let Q be a compact interval or a circle.

THEOREM 4. If X is a W_n -subspace of C(Q) and if $\dim X = 2n + 1$, then X is a Cebîşev subspace.

Proof. We employ the same argument as MICCHELLI [5, theorem 4].

Let X be the linear span of $g_0, g_1, \ldots g_{2n}$.

Suppose X is not a Cebîşev subspace. Then there exist 2n + 1 distinct points q_0, \ldots, q_{2n} in Q, and 2n+1 real numbers a_0, \ldots, a_{2n} not all equal to zero, such that

(11)
$$\sum_{j=0}^{2n} a_j g_i (q_j) = 0, \qquad i = 0, 1, \dots, 2n$$

Put $M = \{j : a_i > 0\}$. Multiplying, if necessary, (11) by -1, we may assume card $M \leq n$. Define the functionals μ , ν by

$$\mu = \sum_{j \in M} a_j \hat{q}_j$$
 ($\mu = 0$ if $M = \emptyset$), $\nu = -\sum_{j \in M} a_j \hat{q}_j$.

From (11) we obtain $\mu(g) = \nu(g)$ for all g in X. Moreover, μ is in \mathfrak{D}_n , and v is in \mathfrak{L}_+ . By theorem 3, X is determining for μ , hence $\mu = \nu$. This contradicts the assumption that q_0, \ldots, q_{2n} are distinct and a_0, \ldots, a_{2n} are not all equal to zero.

REFERENCES

- [1] Berens, H., Lorentz, G. G., Convergence of positive operators. J. Approximation Theory, 17, 307-314 (1976)
- [2] Boboc, N., Bucur, G., Conuri convexe de funcții continue pe spații compacte. Ed. Acad. R.S.R., București, 1976.
- [3] Cavaretta, Jr., A. S., A Korokvin theorem for finitely defined operators. Approximation Theory, ed. G. G. Lorentz. Academic Press, New York, 299-305, 1973.
- [4] Ferguson, L. B. O., Rusk, M. D., Korovkin sets for an operator on a space of continuons functuions. Pacific J. Math. 65, 337-345 (1976).
- [5] Micchelli, C. A., Chebyshev subspaces and convergence of positive linear operators. Proc. Amer. Math. Soc., 40, 448-452 (1973).
- [6] Micchelli, C. A., Convergence of positive linear operators on C(X). J. Approximation Theory 13, 305-315 (1975).
- [7] Rusk, M. D., Determining sets and Korovkin sets on the circle. J. Approximation Theory, 20, 278-283 (1977).
- [8] Shashkin, Yu. A., Finitely defined linear operators in spaces of continuous functions (Russian). Uspehi Mat. Nauk, 20, no. 6(126), 175-180 (1965).

Received 18. IX. 1980