MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 10, Nº 1, 1981, pp. 101-111 the territor and a great the second of the second and the second a

ON THE MULTI-VALUED METRIC PROJECTION IN NORMED VECTOR SPACES to de time the state of the sta

IOAN ŞERB (Cluj-Napoca)

In this paper we'll define countable and finite multi-valued metric projections and we shall examine their existence in normed, locally convex and metrizable topological vector spaces.

Let X be a real or complex normed vector space and M an arbitrary subset of X. We denote by P_M the metric projection with respect to M i.e.,

$$P_{M}(x) = \{m_0 \in M | ||x - m_0|| = \inf_{m \in M} ||x - m||\},$$
 he set

and by Um the set

$$\mathcal{U}_{M} = \{x \in X | \operatorname{card} P_{M}(x) \leq 1\}.$$

Let M be a non-void proper subset of X. If for every $x \in X \setminus M$ we have at the second of the last - MIX - What have the second of the

The standard distribution
$$2\leqslant \operatorname{card} P_{\mathbf{M}}(x)<\infty$$
,

then we shall say that P_{M} is a finitely multi-valued metric projection.

S. B. STEČIKIN [5] proved that, $\bar{\mathcal{U}}_{M}=X$ for every subset M of X, if and only if X is a strictly convex normed vector space.

It is obvious now, that if X is a strictly convex normed vector space, then for every subset M of X, the corresponding P_M isn't a finitely multivalued metric projection.

Naturally, the question is what happens in more general spaces, i.e. in normed spaces which aren't strictly convex.

THEOREM 1. Let M be an arbitrary non-void, proper subset of a normed space X. Then P_M isn't a finitely multi-valued metric projection.

2

Proof. a) If $\overline{M} = X$, then for every $x \in X \setminus M$ we have $P_M(x) = \emptyset$ hence P_{M} isn't a finitely multi-valued metric projection.

b) If $\overline{M} \neq X$, then let $x_0 \in X \setminus \overline{M}$. Since X is a regular topological space, there exists a neighbourhood of x_0 contained in $X \setminus \overline{M}$.

Let be $r = \inf ||x_0 - m|| > 0$. We suppose that P_M is a finitely multivalued metric projection.

Let $m_1, m_2, \ldots, m_k, k \ge 2$ be the finite set of elements of best approximation of x_0 by elements from M.

Let us denote by $B(x_0, r)$, respectively $\overline{B}(x_0, r)$ the opened (respectively the closed) balls with center in x_0 and radius r.

Then we have:
$$||x_0 - m_i|| = r$$
, $i = 1, 2, ..., k$. Let be $y_0 = \lambda x_0 + (1 - \lambda)m_1$, $0 < \lambda < 1$, and $0 < 3\lambda r < \min_{i=2k} ||m_1 - m_i||$.

We shall prove that

$$1^{\circ} \ \overline{B}(y_0, \lambda r) \subseteq \overline{B}(x_0, r)$$

$$2^{\circ} \ \overline{B}(y_0, \lambda r) \cap M = m_1.$$

1° If
$$x \in \overline{B}(y_0, \lambda r)$$
 then:

1° If
$$x \in \overline{B}(y_0, \lambda r)$$
 then:

$$||x - x_0|| \le ||x - y_0|| + ||y_0 - x_0|| \le \lambda r + ||(1 - \lambda)(m_1 - x_0)|| = \frac{\lambda r + (1 - \lambda)r}{n} = r$$

$$= \lambda r + (1 - \lambda)r = r, \text{ hence } x \in \overline{B}(x_0, r).$$

2° Since $\overline{B}(y_0, \lambda r) \subseteq \overline{B}(x_0, r)$ and $\overline{B}(x_0, r) \cap M = \bigcup_{i=1}^n m_i$, it follows

that $B(y_0, \lambda r) \cap M \subseteq \bigcup_{i=1}^{n} m_i$.

We shall prove now that

2a)
$$m_1 \in \overline{B}(y_0, \lambda r)$$
;

2b)
$$m_i \not\in \overline{B}(y_0, \lambda r), i = 2, 3, \dots, k$$

2a)
$$||y_0 - m_1|| = ||\lambda x_0 + (1 - \lambda)m_1 - m_1|| = \lambda ||x_0 - m_1|| = \lambda r.$$

2b) By
$$||m_1 - m_i|| \le ||m_1 - y_0|| + ||y_0 - m_i||$$
, it follows that $||y_0 - m_i|| \ge ||m_1 - m_i|| - ||m_1 - y_0|| \ge 3\lambda r - \lambda r = 2\lambda r$.

Then $m_i \not\in \overline{B}(y_0, \lambda r), i = 2, 3, \ldots, k$.

From 2a) and 2b) it follows that $\bar{B}(y_0, \lambda r) \cap M = m_1$; then $y_0 \in \mathcal{U}_M$ and P_{M} is not finitely multi-valued, which contradicts the hypothesis.

Let X be now a semi-normed vector space whose topology is given by the semi-norm p(x). We define the metric projection on M, with respect to the semi-norm p(x) by that x and the semi-norm

$$P_{M}(x) = \{m_{0} \in M | p(x - m_{0}) = \inf_{m \in M} p(x - m)\}.$$

In the following proposition we shall give a characterization of the semi-normed vector spaces which aren't normed, in the terms of finitely multi-valued metric projections.

PROPOSITION 2. In every semi-normed vector space X, which isn't normed there exist the sets M_2 , M_3 , ..., M_n , ... as well as the sets A and B such that

(i)
$$\operatorname{card} P_{M_n}(x) = n,$$

for every
$$x \in X \setminus M_n$$
, and every $n \in \mathbb{N}$, and (ii) $\operatorname{card} P_A(x) = \aleph_0$,

$$\operatorname{card} P_B(x) = \aleph_0, \S$$

$$\operatorname{card} P_B(x) = \aleph,$$

for every $x \in X \setminus A$ respectively for every $x \in X \setminus B$.

Proof. Since \hat{B} is a semi-normed but, non-normed vector space, there exists an element $x_0 \neq 0$ with $p(x_0) = 0$. We shall prove that the sets

have the properties (i)—(iii) respectively. We shall prove only that

$$\operatorname{card} P_{M_n}(x) = n,$$

for every $x \in X \setminus M_n$. Let $x \in X \setminus M_n$, then we have

$$p(x-m) \le p(x) + p(-m) = p(x)$$
, for every $m \in M_n$, and

$$p(x) \le p(x-m) + p(m) = p(x-m)$$
, for every $m \in M_n$.

Then p(x) = p(x - m), for every $m \in M_n$. We have now that

$$\operatorname{card} P_{M}(x) = \operatorname{card} M_{n} = n.$$

We can prove similarly the other statements in the propositions. COROLLARY. The semi-normed vector space X isn't a normed vector space if and only if there exists a subset M of X such that PM is a finitely multi-valued metric projection, burning and har ham and a wolfet ti how

If X is a locally convex space and the topology of X is generated by the family of semi-norms $\{\hat{p}_i\}_{i=I}$, then it can be defined the metric projection (see [4]) by the first wall was a suff will through the projection

$$P_{M}(x) = \{m_{0} \in M | \forall i \in I, \ p_{i}(x - m_{0}) = \inf_{m \in M} p_{i}(x - m)\}.$$

With this definition of the metric projection and with a proof analogous to those of Proposition 2 we have:

PROPOSITION 3. If X is a locally convex vector space, and if {pi}iel is the generating family of semi-norms for the topology of X, then the following statements are equivalent:

1. There exists a set $M \subset X$ such that P_M is a finitely multi-valued metric projection.

2. X isn't Hausdorff.

A linear metric space is a vector space whose topology (not necessarily compatible with the linear structure) is given by a metric ρ . In such a space one can easily given an example of a set M with P_M finitely multi-valued. Here the metric projection is defined by

$$P_{M}(x) = \{m_{0} \in M | \rho(x, m_{0}) = \inf_{m \in M} \rho(x, m)\}.$$

If the linear metric space is a metrizable topological vector space, then the metric o is given by a pseudo-norm.

Let be $X = \mathbb{R}^2$. If $x = (x_1, x_2)$ is an arbitrary element of \mathbb{R}^2 , then let q be the pseudo-norm given by

$$q(x) = \sqrt{|x_1|} + \sqrt{|x_2|}.$$

With the metric $\rho(x, y) = q(x - y)$, \mathbb{R}^2 becomes a Hausdorff metrizable topological vector space.

Let M be the set

$$\{x \in \mathbf{R}^2 | x = (a, a), a \in \mathbf{R}\}.$$

Then we have card $P_{M}(x) = 2$, for every $x \in \mathbb{R}^{2} \setminus M$, and hence P_{M} is a finitely multi-valued metric projection.

THEOREM 4. If in a metrizable topological vector space X, PM is a finitely multi-valued metric projection then M is a perfect set of X.

Proof. Let P_M be a finitely multi-valued metric projection. We suppose that M isn't a closed set. Let $x \in \overline{M} \setminus M$. Since $x \in \overline{M}$, it follows that for every $\varepsilon > 0$, there exists an element $m \in M$ such that $\rho(x, m) =$ $=q(x-m)<\varepsilon$, with q the mentioned pseudo-norm. If $m_0\in P_{M}(x)$, then

$$q(x-m_0)=\inf_{m\in M}q(x-m)=0,$$

and it follows that $x = m_0$ and this contradicts the fact that $x \in \overline{M} \setminus M$. Hence M is a closed set.

We suppose now that M isn't dense in itself. Let $m_0 \in M$ be an isolated point. Then there exists an $\epsilon>0$ such that the set

$$\{x \in X | q(x - m_0) < \varepsilon\},$$

doesn't contain points of M different from m_0 . Then we have $q(m-m_0) \geqslant \varepsilon$ for every $m \in M$, $m \neq m_0$. Let $\lambda_n \to 0$ be a null sequence and $x_n = (1 - 1)^n$ $-\lambda_n)m_0$. From the continuity of the mapping $(\lambda, x) \to \lambda x$, we obtain

$$q(x_n - m_0) = q(-\lambda_n m_0) = q(\lambda_n m_0) \leq \varepsilon/3$$

for every $n \ge N_0$. Then for every $m \in M$, $m \ne m_0$, and $n \ge N_0$ we obtain

$$q(x_n - m) = q[(1 - \lambda_n)m_0 - m] = q(m_0 - m - \lambda_n m_0) \geqslant$$

$$\geqslant |q(m_0 - m) - q(\lambda_n m_0)| \geqslant \varepsilon - \frac{\varepsilon}{3} = \frac{2\varepsilon}{3} \geqslant \frac{\varepsilon}{3} + q(x_n - m_0).$$

Hence we have

$$q(x_n-m)\geqslant q(x_n-m_0)+\frac{\varepsilon}{3}$$
,

for every $m \neq m_0$, $n \geq N_0$ and it follows that $P_M(x_n) = m_0$, for every $n \geq N_0$. Then P_M isn't a finitely multi-valued metric projection, which contradicts our assumption. Then M is indeed a perfect set.

In the following theorems we shall consider the normed spaces in which there exists a set M with the property that for every point $x \in X \setminus M$ we have card $P_{M}(x) = \aleph_{0}$. First, we give some definitions.

Let M be a non-void, proper subset of the normed vector space X. We shall say that the corresponding metric projection P_M is a countable multi-valued metric projection if for every $x \in X \setminus M$ we have

card
$$P_{M}(x) = \aleph_{0}$$
.

If the above relation is verified only for $x \in X \setminus \overline{M} \neq \emptyset$, then we shall say that P_M is a weakly countable multi-valued metric projection.

By the Steckin's above mentioned result it follows that such metric projections must be tryed only in the non-strictly convex spaces.

As a simple remark, we have that for a convex set M, the corresponding P_M isn't a finitely, or a weakly countable, multi-valued metric projection.

Indeed, if M is a convex set, $x \in X \setminus \overline{M}$ and if $m_1, m_2 \in P_M(x)$, with $m_1 \neq m_2$, then, for every $\lambda \in (0, 1)$ we have

$$||x - \lambda m_1 - (1 - \lambda)m_2|| = ||\lambda(x - m_1) + (1 - \lambda)(x - m_2)|| \le \lambda||x - m_1|| + (1 - \lambda)||x - m_2|| = d(x, M),$$

where d(x, M) is the distance of x to M.

It follows that $\lambda m_1 + (1 - \lambda)m_2 \in P_M(x)$, for every $\lambda \in (0,1)$. Hence in this case P_M isn't a finitely or a weakly countable multi-valued metric projection. When X is a metrizable topological vector space, and P_{M} is a countable multi-valued metric projection, we have (in analogy with Theorem 4).

7

PROPOSITION 5. Let X be a metrizable topological vector space and M a non-void proper subset of X. If P_M is a countable multi-valued metric projection, then M is a perfect subset of X.

The proof is similar with the proof of Theorem 4. In the case when X is a Banach space we have

THEOREM 6. If X is a Banach space, and M a non-void, proper subset of X, then PM cannot be a countable, multi-valued metric projection.

Proof. We suppose that there exists a set $M \subset X$, with the property

that P_{M} is a countable multi-valued metric projection.

Then M is, according to the last proposition, a perfect set. If $x \in$ $\in X \setminus M$, then card $P_M(x) = \aleph_0$. But, generally, the intersection of two perfect sets isn't a perfect set. However, we prove that the intersection

$$P_{M}(x) = M \cap S(x, d(x, M)),$$

where S(x, d(x, M)) is the sphere with center in x and radius d(x, M), is a perfect set.

a) $P_{M}(x)$ is a closed set as an intersection of two closed sets.

b) $P_{M}(x)$ is a set that is dense in itself. Indeed, if m_{0} is an isolated point of $P_M(x)$, then there exists a ball $B(m_0, \varepsilon)$, with center in m_0 and radius $\varepsilon > 0$, such that

$$P_{\mathbf{M}}(x) \cap B(m_{\mathbf{0}}, \varepsilon) = m_{\mathbf{0}}.$$

Let us consider the point
$$x_{\lambda} = (1 - \lambda)m_0 + \lambda x \in X,$$

with $0 < \lambda < \varepsilon/(2||x - m_0||) < 1$. Since

$$||x - x_{\lambda}|| = ||x - (1 - \lambda)m_0 - \lambda x|| = (1 - \lambda)||x - m_0|| = (1 - \lambda) d(x, M),$$

it follows that $x \in X \setminus M$. We have

$$||x_{\lambda}-m_0||=||(1-\lambda)m_0+\lambda x-m_0||=\lambda||x-m_0||<\varepsilon/2.$$

On the other hand let $m \in M$, $m \neq m_0$. Then $m \in P_M(x) \setminus \{m_0\}$ or $m \not\in \overline{B}(x, d(x, M))$. We shall prove that

$$||x_{\lambda}-m||>||x_{\lambda}-m_0||,$$

for both cases.

If $m \in P_M(x) \setminus \{m_0\}$ we have:

$$||x_{\lambda}-m||\geqslant |||m_{0}-m||-||x_{\lambda}-m_{0}|||>\varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2}>||x_{\lambda}-m_{0}||.$$

If $m \notin \overline{B}(x, d(x, M))$ we have:

If
$$m \not\in B(x, d(x, M))$$
 we have:

$$||x_{\lambda} - m|| \ge ||x - m|| - ||x - x_{\lambda}|| | > (d(x, M) - (1 - \lambda)d(x, M)) =$$

$$= \lambda d(x, M) = ||x_{\lambda} - m_{0}||.$$

It follows that $P_{M}(x) = \{m_{0}\}$, and $x_{\lambda} \in X \setminus M$. Then $P_{M}(x)$ is dense in itself and hence a perfect set. But, if $P_{\mathbf{M}}(x)$ is a perfect set of the complet metric space X, then (see [1]) $P_M(x)$ is an uncountable set. The theorem

ON THE MULTI-VALUED METRIC PROJECTION

However, if X is a non-Hausdorff locally convex space, $\{p_i\}_{i\in I}$ is the generating set of semi-norms for the topology of X and $x_0 \neq 0$ is a point for which $p_i(x_0) = 0$, for every $i \in I$, then the metric projection with respect to te set A

$$A = \{x_0, x_0/2, \ldots, x_0/n, \ldots\},\$$

is a countable multi-valued metric projection. A proof is given in Proposition 2.

We shall show in the sequel that there exist a wide class of normed spaces with weakly countable multi-valued metric projections.

Notice first, that, in virtue of a well-known result, in every non strictly convex normed space there exists a closed real hyperplane H such that card $P_H(x) \geqslant \aleph$, for every $x \in X \setminus H$.

Indeed, if X isn't a strictly convex normed space then there exist $x_1, x_2 \in S(0, 1) = \text{Fr } (B(0, 1)) \text{ such that } \lambda x_1 + (1 - \lambda)x_2 \in S(0, 1) \text{ for }$ every $\lambda \in (0,1)$. (see for instance M. C. KREIN [2]). Then from a wellknown separation theorem, (see H. H. SCHAEFER [3]) there exists a close real hyperplane containing the segment $[x_1, x_2]$ and not intersecting the interior of the unit ball. Let H be this hyperplane. We have $H = x_1 + H_0$ where x_1 is one of the previous points and H_0 is a hyperplane parallel to H and passing through the origin. We'll show now that for every $x \in X \setminus H$, card $P_H(x) \geqslant 8$. Let $x \in X \setminus H$. We have $x = \lambda x_1 + h_x$ with $\lambda \neq 1$, $h_x \in H_0^{HV}$ and the decomposition is unique.

$$P_{H}(x) = \{x_{1} + h_{1} | || \lambda x_{1} + h_{x} - x_{1} - h_{1}|| = \inf_{h \in H_{0}} || \lambda x_{1} + h_{x} - x_{1} - h|| \} = x_{1} + P_{H_{0}}((\lambda - 1)x_{1} + h_{x}),$$

and from the quasi-additivity and homogeneity of the multi-valued metric projection (with respect to a subspace) we have:

$$P_H(x) = x_1 + h_x + (\lambda - 1)P_{H_0}(x_1).$$

If x = 0, we have $h_x = 0$, $\lambda = 0$ and $P_H(0) = x_1 - P_{H_0}(x_1)$. Since $P_H(0)$ contains the segment $[x_1, x_2]$ it follows that

$$\aleph \leqslant \operatorname{card} P_H(0) = \operatorname{card} P_{H_0}(x_1) = \operatorname{card} P_H(x),$$

for $\lambda \neq 1$, i.e. for every $x \in X \setminus H$.

Let A be a convex set and H a closed real hyperplane of a normed space X. Then, H is called a supporting hyperplane of A if $A \cap H \neq \emptyset$ and if A is contained in one of the closed semi-spaces determined by H.

The hyperplane H considered in the previous example was the supporting hyperplane of the unit ball of a non-strictly convex space.

THEOREM 7. Let X be a normed space. If the unit ball $\overline{B}(0, 1)$ of X has at least one supporting hyperplane H with the property that

$$1 \leqslant \dim [H \cap \overline{B}(0, 1)] \leqslant \aleph_0$$

then there exists a set M C H, dense in H such to P_M be a weakly countable multi-valued metric projection.

Proof. Let $S = H \cap \overline{B}(0, 1)$. Then S is a convex set of dimension ≤ № which contains at least a segment. From the previous remarks it results that if $x \in X \setminus H$, then

$$P_{H}(x) = x_{1} + h_{x} + (\lambda - 1)P_{H_{0}}(x_{1}) =$$

$$= x_{1} + h_{x} + (\lambda - 1)(x_{1} - P_{H}(0)) =$$

$$= \lambda x_{1} + h_{x} - (\lambda - 1)P_{H}(0) = x - (\lambda - 1)P_{H}(0),$$

with the above notations, and $\lambda \neq 1$, for $x \in X \setminus H$.

Since
$$P_H(0) = H \cap \overline{B}(0, 1) = S$$
, we have

$$\operatorname{card} P_H(x) = \operatorname{card} S = \Re,$$
 for every $x \in X \setminus H$

for every $x \in X \setminus H$.

Consider the Hamel basis $\{e_i\}_{i=1}$ in H_0 and let M_0 be the linear hull of $\{e_i\}$ with rational coefficients.

It is easy to see that $M = M_0 + x_0$ is dense in H, and for every $x \in X \setminus \overline{M} = X \setminus H$ we have

$$\operatorname{card} P_{M}(x) = \aleph_{0}(\dim S) = \aleph_{0},$$

since $1 \leq \dim S \leq \aleph_0$.

Remark. Every non strictly convex normed space of algebraic dimension at most \aleph_0 has weakly countable multi-valued metric projections.

However, there exist non strictly convex normed spaces without the property in the precedent theorem. A such space is c_0 , the space of real sequences converging to 0. If $x = (x_1, x_2, \ldots, x_n, \ldots) \in c_0$, then ||x|| =to Alleman the Artist Philippine and John Company of the Principle of the $= \max\{|x_i|, i \in \mathbb{N}\}.$

It is well-known that c_0 is a separable Banach space and his unit ball has no extremal points. The intersection of the closed unit ball with an arbitrary supporting hyperplane of its is a closed convex set of algebraic dimension 8, however we have:

PROPOSITION 8. There exists in co a weakly countable multi-valued metric projection.

Proof. Let H be a supporting hyperplane of the unit ball of c_0 and $x_0 \in H \cap \bar{B}(0, 1)$. Then

 $x_0 = (x_1^0, x_2^0, \ldots, x_n^0, \ldots)$ where $x_{i_1}^0, x_{i_2}^0, \ldots, x_{i_n}^0 \in \{-1, 1\}$ and x_i with $i \neq i_1, i_2, \ldots, i_n$ will be in an interval [-r, r] with $r \in (0, 1)$.

For a complete proof we need the following lemma (see I. SINGER [4]).

LEMMA 9. Let X be a normed vector space, $x \in X$ and r > 0. For any $f \in X^*$ with ||f|| = 1, the hyperplane $H \subset X$ defined by

(*)
$$H = \{ y \in X | f(x - y) = r \} = \{ y \in X | f(y) = f(x) - r \},$$

supports the ball $\bar{B}(x,r)$, and conversely, for any supporting hyperplane H of the ball $\overline{B}(x, r)$ there exists a unique $f \in E^*$ with ||f|| = 1 such that the equality (*) holds.

We use only the second part of the lemma. Particularly, we have that each supporting hyperplane of the unit ball can be written in the

$$(**) H = \{x \in X | f(x) = -1\},$$

where $f \in X^*$ and ||f|| = 1.

For c_0 , the theorem of representation of continuous linear functionals

$$f(x) = f_{i}(x) = \sum_{i=1}^{\infty} u_{i} x_{i}$$

 $f(x) = f_{u}(x) = \sum_{i=1}^{\infty} u_{i} x_{i}$ where $u = (u_{1}, u_{2}, \ldots) \in l^{1}, x = (x_{1}, x_{2}, \ldots)$ and $||f|| = ||u||_{l^{1}}.$

$$||f|| = ||u||_{l^1}$$

From (**) we obtain

$$\sum_{i=1}^{\infty} u_i \ x_i = -1 \ \text{and} \ ||f|| = ||u||_{\mu} = \sum_{i=1}^{\infty} |u_i| = 1.$$

From the fact that $x_0 \in H$ we have

$$1 = \left| \sum_{i=1}^{\infty} u_i \ x_i^0 \right| \leq \sum_{i=1}^{\infty} |u_i| \ |x_i^0| \leq \sum_{i=1}^{\infty} |u_i| = 1.$$

It follows that in order to have equalities in the above sequences of inequalities it is necessary and sufficient that

$$\begin{cases} \operatorname{sign} u_i = -\operatorname{sign} x_i^0, \text{ for every } i \in \mathbb{N}; \\ u_i = 0, \text{ for any } i \neq i_1, i_2, \dots, i_n; \\ \sum_{k=1}^n |u_{i_k}| = 1. \end{cases}$$

From this conditions it follows that the supporting hyperplane which passes through x_0 is

$$H = \left\{ x \in c_0 \middle| \sum_{k=1}^n u_{i_k} x_{i_k} = -1, \sum_{k=1}^n |u_{i_k}| = 1 \right\},$$

11

where u_{i_k} are uniquely determined for a given supporting hyperplane H. It is easy to see now that

$$H \cap \overline{B}(0, 1) = \{x \in c_0 | x_{i_k} = -\operatorname{sign} u_{i_k}, \ k = \overline{1, n}, \ |x_i| \le 1, \ i \in \mathbb{N}\} = \{x \in c_0 | x_{i_k} = x_{i_k}^0, \ k = \overline{1, n}, \ |x_i| \le 1, \ i \in \mathbb{N}\}.$$

Then $H \cap \bar{B}(0,1)$ is a closed set of algebraic dimension \aleph .

Let us denote by M the reunion of the exterior of $\overline{B}(0, 1)$ and the set N in S(0,1) given by the set S(0,1) given S(0,1) given by the set S(0,1) given S(0,1

$$N = \{x \in c_0 | ||x|| = 1, x = (x_i), x_i \text{ rational, and } x_i \neq 0 \text{ for a finite set of indices} \}.$$

We prove now that for this set M, P_M is a weakly countable multi-valued metric projection. We have immediatly

$$P_H(0) = N$$
, and hence card $P_M(0) = \aleph_0$.

If $x \in B(0,1)$, $x \neq 0$, it follows that there exists an $x_0 \in Fr B(0,1)$ and an $\lambda \in (0,1)$ such that $x = \lambda x_0$. Let H be a supporting hyperplane of the unit ball which passes through x_0 . The existence of a such hyperplane is guaranteed by separation theorems. (see H. H. SCHAEFER [3]). We have

$$P_{H}(\lambda x_{0}) = \lambda x_{0} + (1 - \lambda) P_{H}(0) =$$

$$= \{ x \in c_{0} | x_{i_{k}} = x_{i_{k}}^{0}, \ k = \overline{1, n}, \ x_{i} = \lambda x_{i}^{0} + (1 - \lambda) \alpha_{i},$$

$$|\alpha_{i}| \leq 1, \ i \neq i_{1}, i_{2}, \dots, i_{n}, \ \text{and} \ \alpha_{i} \to 0 \ \text{when} \ \ i \to \infty \},$$

where $x_{i_k}^0$ and x_i^0 were given in the first part of the theorem. It is easy to see that α_i can be chosen such to x_i be all rational. Moreover, since

$$||x_i^0|| < (1-\lambda)/\lambda$$

for any $i \ge N_0 \ge 2i_n$, all the α_i 's can be chosen $-\lambda x_i^0/(1-\lambda)$, for $i \ge N_0$. and with the bull transfer of the still and

$$|x_i| = |\lambda x_i^0 + (1-\lambda)\alpha_i| \leq \lambda |x_i^0| + (1-\lambda)|\alpha_i| \leq 1,$$

for every $i \neq i_1, i_2, \ldots, i_n$, and $x_{i_k} \in \{-1, 1\}, k = \overline{1, n}$ and since the choice of α_i with the previous properties can be made for a countable number of points from

$$P_H(\lambda x_0) \cap \overline{B}(0,1) \cap M$$

it follows that we have

$$\aleph_0 \geqslant \operatorname{card} P_{M}(x) = \operatorname{card} P_{M}(\lambda x_0) \geqslant \operatorname{card} (P_{H}(\lambda x_0) \cap \overline{B}(0, 1) \cap M) \geqslant \aleph_0.$$

Hence card $P_{\mathbf{M}}(x) = \aleph_0$, for every $x \in X \setminus \overline{M} = B(0, 1)$ and $P_{\mathbf{M}}$ is a weakly countable multi-valued metric projection. Q.E.D.

REFERENCES

- [1] Hewitt, E., Stromberg, K., Real and Abstract Analysis, Springer-Verlag, Berlin-
- [2] Krein, M. G., L-problema v abstraktnom lineinom normirovannom prostranstve, (in vol. O nekatoryh voprosah teoriji momentov), 171-199, Harkov, 1938.
- [3] Schaefer, H. H., Topological Vector Spaces. Mac Millan Company, New York, 1966. [4] Singer, I., Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale. București, 1967.
- [5] Stecikin, S. B., Aproximativnye svoistva mnojestv v lineinyh normirovannyh prostranstvah. Rev. Math. Pures. Appl. 8 (1963), 5-18.

the process for fined transity ratios are the manufecture, and transity and

Received 4. IX, 1980

Institute of Mathematics "Babeş-Bolyai" University Str. Republicii 37-39 3400 Cluj-Napoca, Romania