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In this paper we'll define countable and finite multi-valued metric
projections and we shall examine their existence in normed, locally con-
vex and metrizable topological vector spaces.

Let X be a real or complex normed vector space and M an arbitrary
subset of X. We denote by Py the metric projection with respect to M
ie.,

Pu(x) = {m, « M| ||x — m,|| = inf ||% — ml|},
and by €f,, the set
Uy = {¥ = X|card Py(x) < 1}

Let M be a non-void proper subset of X. If for every x < X\ M
we have

2 <.card Py (x) < oo,

then we shall say that Py is a finitely multi-valued metric projection.

8. . STECIKIN [5] proved that, Uu = X for every subset M of X,
if and only if X is a strictly convex normed vector space. i

It is obvious now, that if X is a strictly convex normed vector space,

- then for every subset M of X, the corresponding P, isn’t a finitely multi-

valued metric projection.

Naturally, the question is what happens in more general spaces, i.e.
in normed spaces which aren’t strictly convex.

THEOREM 1. Let M be an arbitrary nom-void, proper subset of a nor-
med space X. Then Py isw’t a finitely multi-valued metric projection.
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“Proof. a) If M = X, then for, every ¥ € X (M we have Py (v)=@
hence Py isn’t a finitely multi-valued metric projection.

b) If M # X, then let x, & X N M. Since X is a regular topological
space, therc exists a neighbourhood of %, contained in X M.

Let be » = inf ||x, — m|| > 0. We suppose that Py, is a finitely multi-

me M
valued metric projection.
Let my, my, ..., m,, & > 2 be the finite set of elements of best appro-
ximation of x, by elements from M.
Let us denote by B(x,, #), respectively B(x,, 7) the opened (respecti-
vely the closed) balls with center in %, and radius 7.
Then we have: ||y —m|| =7 i=12, ..., k. Let be

Yo = Mo+ (1 — Wmy, 0 < A < 1, and 0 < 3% < min |jm; — m,]].

=2

We shall prove that
1° B(yo, M) < B(x,, 7)
2° B(yg, M)\ M = m,.
1° If ¥ € B(y,, M) then:
AE = 2ol < = yoll + o — x4l < M {1 = A)(my —
= M + (1 — Ny =7, hence x € B(x,, 7).
’
2° Since B(y,, M) S B(x,, #) and B(xo 7)Y\ M = Um,, it follows
i=1

=
I

k
that B(y, ) O\ M< Um,.
i=1
We shall prove now that
2a) my <= By, );

2b) m; & By, M), i =2,3, ..., k. . :

2a) |y, — my|| = ||Ax, + (1 — Nmy — my|| = N|xy — m,y|| = .

2b) By |lmy, — m]|| < ||m, — Yoll + llyo — m,]|, it follows that
1o — mill > llmy — my|l — |lmy — yoll = 3w — v = 20,

Then m; & l_?(yo, M), =23, ...,k

From 2a) and 2b) it follows that B_(QO, W) M = my; then y,< Uy
and P, is not finitely multi-valued, which contradicts the hypothesis.

Let X be now a semi-normed vector space whose topology is given
by the semi-norm p(x). We define the metric projeetion on M, with
respect to the semi-norm p(x) by e alaider g : :

Pu(x) = {my = Mp(x — mq) = inf p(x — m)}.
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~~In the- following proposition we shall give a' characterization’ of - the
semi-normed vector spaces which aren’t normed, in the terms of finitely
multi-valued metrie projections. Alan LI

PROPOSTIION 2. I ‘every semi-normed vector space ‘X, which isn't nor-

med there exist the sets M,, My, o, M, ... as well as the sets A and B
such that+= .- - Tagy A oz A Ty -'

(i) card PM”(x) = n,

Jor " every xe XM, qhd every¥n = N, and

(rdinndd "8 s card P (x) = 80,1

(iii) o card Pyx) = §,

Jor every x S XNA respectively for every x € X\ B. "
_ Proof. Since B is a semi-normed but, non-normed vector space, there
exists an element x, # 0 with #(xy) = 0. We shall prove that the sets
M, = {xo: %0/2}, __
M, = {xo: %o/2, %o[3},
Mn = {xo: x0/21 %0/3, sy xo/n}:
A ="{ % 5D %ol3, ..., Xo/n, .. -4
B = {2\%o}r<o, 1)

have the properties (i)—(iii) respectively.
We shall prove only that

card Py (%) = n,

for every x = XN\ M,
Let x € X\ M,, then we have

plx — m) < p(x) 4 p(—m) = p(x), for every m & M,, and
P(x) < plx — m) - p(m) = (% — m), for every m = M,
Thep p(x) = p(x — m), for evéry m € M,. We have now that _'
card Py(x) = card M, = n.

We can prove similarly the other statements in the propositions.

COROLLARY. The semi-normed wvector space X isn't a normed vector
space if and only if theve exists a subset M of X such that Py is a finitely
mulbi-valued metric projection.

If X is a locally convex space and the topology of X is generated
by the family of semi-norms {#£;}ie1, then it can be defined the metric
projection (see [4]) by _

Py(x) = {my = M|Vi < I, (¥ — mg) = inf p,(x — m)}.

me M
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With this definition of the metric projection and with a proof analogous
to those of Proposition 2 we have: :

PROPOSITION 3. If X dis a locally comvex vector space, and if {p}icr
is the gemerating family of semi-norms for the topology of X, then the follo-
wing statements are equivalent : il :

L. There exists a set M C X "such that P, is a Sfinitely multi-valued
melric projection.

2. X isw’t Hausdorff.

A linear metric space is a vector space whose topology (not nece-
ssarily compatible with the linear structure) is given by a metric p. In
such a space one can easily given an example of a set M with P,, finitely
multi-valued. Here the metric projection is defined by

PM(x) = {mo . M|P(x; my) = inf p(x, m)}

meM

If the linear metric space is a metrizable topological vector space,
then the metric p is given by a pseudo-norm.

Let be X = R% If x = (%, %,) is an arbitrary element of R, then
let g be the pseudo-norm given by

9(%) = Jiz] 4 /%,
With the metric p(x, y) = g(x — ¥), R? becomes a Hausdorff metrizable

topological vector space.
Let M be the set

{x e B|x = (4, a), a R}

Then we have card Py(x)= 2, for every x « R®™ M, and hence Py o1s
a finitely multi-valued metric projection. h .
THEOREM 4. If in a metrizable topological vector space X, Py is a
Jimitely multi-valued metric projection then M is a perfect set of X. -
Proof. Let' Py, be a finitely multi-valued metric projection. We sup-
pose that M isn’t a closed set. Let x M .M. Since x € M, it follows
that for every ¢ > 0, there exists an element m = M such that e(x, m) =
= ¢(¥ — m) < ¢, with ¢ the mentioned pseudo-norm. If m, = Py(x), then

g(x — my) = inf g(x — m) = 0,
me M
and it follows that x = m, and this contradicts the fact that x € M\ M.
Hence M is a closed set.

We suppose now that M isn’'t dense in itself. Let m, € M be an
isolated point. Then there exists an ¢ > 0 such that the set

{x = X|g(x —m,) <},
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doesn’t contain points of M different from #o. Then we have q(m — Me) 2 €
for every m € M, m = my. Let A, - 0 be a null sequence and x, = (1 —
— A)my. From the continuity of the mapping (A, ) - Ax, we obtain

q(xn Ty= mO) = 9(_—7\",%0) = q()\ﬂmo) < 8/3

for every n > N,.
Then for every m = M, m # My, and # > N, we obtain

(% — m) = g[(1 — A,)my — m]=q(my —m — nm,) >

2 |g(m0 ] m) B q()\nmo), =& — ==z ’;i + Q(xn Ta mo)-

Hence we have

Q(xn =) m) e Q(xﬂ - mo) + ; 4
for every m # m,, n > N, and it follows that Py(,) = m,, for every
# 2 Ng. Then P, isn’t a finitely multi-valued metric projection, which
contradicts our assumption. Then M is indeed a perfect set.

In the following theorems we shall consider the normed spaces in which
there exists a set M with the property that for every point x € X\ M
we have card Py(x) = N, First, we give some definitions.

Let M be a non-void, proper subset of the normed vector space X,
We shall say that the corresponding metric projection Pyis a countable
multi-valued metric projection if for every x € X\ M we have

card Py (x) = N,.

If the above relation is verified only for x € X\ M # J, then we

‘shall say that P,, is a weakly countable multi-valued metric projection.

By the Steckin’s above mentioned result it follows that such metric
Projections must be tryed only in the non-strictly convex spaces.

As a simple remark, we have that for a convex set M, the corres-
ponding P, isn’t a finitely, or a weakly countable, multi-valued metric
projection. o

Indeed, if M is a convex set, x e XN M and if m,, m, Py (x), with
my # m,, then, for every A e (0, 1) we have

% — wmy — (1 — Nmo)| = [|\(x — m) + (1 — 2 (x — my)|| <
S AME — ]| + (1 — N)l|x — my)| = d(x, M),
where d(x, M) is the distance of x to M.
It follows that am, + (1 — Ny & Py(x), for every A < (0,1). Hence
in this case P, isn’t a finitely or a weakly countable multi-valued metric

projection. When X is a metrizable topological vector space, and Py, is

a countable multi-valued metric projection, we have (in analogy with
Theorem 4), ,
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: i JFION 5. Let X be a metrizable topological vector. space i M
a noiffoighiﬁalrgf)bér subset of X.'If Py s @ countable multz—valluedl :.metmc
projection, then M is a perfect subset of X.' , i A
The proof is similar with the prolg:l{ of rheore"lllf -
the case when X is a Banach space we have : |
E‘XIIU_"-O;FM 6. If X is a Banach space, and M a no_n—vou@, p_r_oj)e-r:subset
of X then PM cannol be a countable, mulli-valued metric- projection.. . .
IP'roojl We suppose that there exists a set M C X, with t»heﬁl property
at P, is a countable multi-valued metric projection. :
e 'Ij‘rlzx‘!(‘;n1 M is, according to the last proposition, a__l_)erfecf’p s‘et. If x
s X\M then card Py(%) = N, But, generally, the intersection of two
perfect sets isn't a perfect set. However, we prove that the 11'1ter§efc€t1:on
Pyu(x) = M N S(x, d(x, M)),
where S(x, d(x, M)) is the spliere with cefiter in & and radius d(x, M),

i perfect set. . | oy yon
T g) Py(#) is a closed set as an intersection of two closed sets.

i : is dense in i Indeed, if .m, is an isolated
b)Y P.(x) is a set that is (lansg in itself. ced, ;
pointj)of %(M()x), then there exists a ball ' B(m,, <), with cente.r 1p m, and
radius ¢ > 0, stuch that

Pyu(%) N B(mo» g) = Mo-
Let us cousider the pOinf
; . % = (1 — Nmy + Az = X,
with‘O < A< gf(2]]x — m,ll) < 1. Since
12— ] = Nl — (1 — Ny — Aal| = (1 = W)llw —moll = (1 =) d(, M),
it follows that » « X» M. We have
1% — moll = |[(1 — Wmg + A — moll = Alx — mqll < &f2.
On the other hand let m € M, m # m,. Then m & Py(x) "\ {my} or
m & B(x, d(x, M)). We shall prove that
[, — mf] > |12y — ol

for both cases.
If m & Py(x)~{m, we have:

2y — ml| > |lmg — mll — Il — mall | > & = 2 = 5 >[I — moll:

It m = B(x, d(z, M) we have: ” el st
el 2 | W=l =l — | > (@, M) — (L= Nd(x, M)).=
' — M(x, M) = ||%, — myll. '
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It follows that Py (%) = {m,}," and w3 = X\ M. Then P, (x) is dense in
itself and hence a perfect set. But, if 1Py (%) is a perfect set of the complet
metric space X, then (see [1]) P,(x) is an uncountable set. The theorem
is proved. ' o

'+ However, if X is a ‘non- Hausdorff locally ‘convex space, {ptiar 1s
the generating set of semi-norms for the topology of X and %, % 0'is
a point for which p,(x,) = 0, for ever$§'s =1, then the metric projection
with respect to te set A Tgofua g g : '

A = {xy, %2, ..., xoln, ...},

is a countable multi-valued metric projection. A proof is given in Propo-
sition 2. : ]

We shall show in the sequel that there exist a wide class of normed
spaces with weakly countable multi-valued mnietric projections.

Notice first, that, in virtue of a well-known result, in every non strictly
convex normed space there exists a closed real hyperplane H such that
card Py(x) > N, for every x & XX H. '

Indeed, if X isn’t a, strictly convex normed space then there exist
%1, %y € S(0, 1) = Fr (B(0, 1)) such that ax, 4 (I — 2)x, = S(0, 1) for
every A < (0,1). (see for instance a. ¢. krpin [2]). Then from a well-
known separation theorem, (see m. 1. scHAnrER. [3]) there exists a close
real hyperplane containing the segment [x;, x,] and not intersecting the
interior of the unit ball. Let H be this hyperplane. We have H = x,-H,
where x, is one of the previous points and H, is a hyperplane parallel
to H and passing through the origin. We'll show now that for every
¥ = X\H, card Py(x) > N. Let x € X~ H. We have x — A%y - h,
with A # 1, 4, € H, and the decomposition is unique.

Ppu(x) =%, + k| || A2 4 A Tl A
=inf [[Ax; + &, — %, — B} = %y 4 Pu, (M — 1)z, + ),

heH,
and from the quasi-additivity and homogeneity of the multi-valued metric
projection (with respect to a subspace) we have.:

Py(x) = %, + b, + (A i) 1) Py, ().

If x=0, we have %, =0, A =0 and Pgz(0) = %, — Py, (%)
Since Py(0) contains the segment [#,, x,] it follows that

N < card Py(0) = card Pp,(x,) = card Py(x),

for A # 1, i.e. for every x = X H.

Let A be a convex set and H a closed real hyperplane of a normed
space X. Then, H is called a supporting hyperplane of A if A N\ H + O
and if-4 is contained in one of the closed semi-spaces determined by H.

The hyperplane H considered in the previous example was the sup-
porting hyperplane of the unit ‘ball of a mon-strictly convex space.
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THEOREM 7. Let X be a normed space. If the uwit ball B(0, 1) of X
has at least ome supporting hyperplane H with the property that

1 < dim [HN) B0, 1)] < N,

then theve exists a set M (C H, dense in H such to Py be a weakly coun-
table multi-valued metric projection.

Proof. Let S = H N B(0,1). &fhen S is a convex set of dimension
< N, which contains at least a segment. From the previous remarks it
results that if * « X~ H, then

Py(x) = %y + b, + (A — 1) Py (%) =
=% + kb, + (A= 1) (3 — Py(0)) =
= My oy — (0 — D)P40) — ¥ — (A — 1) Py(0),
with the above notations, and A # 1, for x X' H.
Since PL(0) = H N B(0, 1) =S, we have
card Py(x) = card S = N,
for every x = X\ H.

Consider the Hamel basis {¢,};; in H, and let M, be the linear hull

of {¢;} with rational coefficients.
It is easy to see that M = M, - x, is deunse in H, and for every

x € XM = X\ _H we have
card Py (x) = No(dim S) = N,

since 1 € dim S < N,

Remark. Every non strictly convex normed space of algebraic
dimension at most §, has weakly countable multi-valued metric projections.

However, there exist non strictly convex normed spaces without the
property in the precedent theorem. A such space is ¢, the space of real
sequences converging to 0. If x = (%, %5, ..., %y, ...) € ¢y, then ||x]| =
= max {|x;|, + € N}.

It is well-known that ¢, is a separable Banach space and his unit ball
has no extremal points. The intersection of the closed unit ball with an
arbitrary supporting hyperplane of its is a closed convex set of algebraic
dimension §, however we have:

PROPOSITION 8. There exists in ¢, a weakly countable multi-valued
metric projection.

Proof. Let H be a supporting hyperplane of the unit ball of ¢, and
%o € H (M B(0, 1). Then '

0 o 0 0
%o, = (&% X8, i 0s Fupoor ) Where &, %, o e o S{— Ll and ¥,
with 4 % 4y, 45, ..., 3, will be in an interval [—r, 7] with » (0, 1).

For a complete proof we need the following lemma (see 1. SINGER [4]).
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LEMMA 9. Let X be a normed vector space, x € X and r > 0. F
f e X* with ||f|| =1, the hyperplane H — X dsfisedn by > 0. For any

(*) H={ysX|flx —y)=r={y = X|fly) = f(x) — 7},

sjtjj)iorts the ball B(x,7), and conversely, for any supporting hyperplane H
of the ball B(x,7) there exists a wuwi ¥ s -
equality (x) holds. que f <= E* with ||fIl = 1 such that the

We use only the second part of the lemma. Particularly, we have

that ) : ; . .
f(}:fm each supporting hyperplane of the unit ball can be written in the

(%%) H={x « X|f(x) = —1},

" where f & X* and [f]| = 1.

give For ¢,, the theorem of representation of continuous linear functionals
co

f®) = fu(%) = 2w, %,

=1

where u = (uy, u,, .. D ER %= (%, %, ...) and

AL = o]l
From (s#) we obtain

0

2ot % = —1 and (Ifl| = |lulla = Y |u, = 1.

i=1 =1
From the fact that x, = H we have

& 00 o0
1= <ol 1] < Pl = 1.

t=1 t=1

0
y U, X;

=1

It follows that in order to have cqualities in the above sequences of ine-

qualities it is necessary and sufficient that
sign #; = — sign ], for every i = N;

u; =0, for any 7 # 4y, 4,, ..., 4,;

»
N
kzz_/l |’I/t,'k| = 1.

From this conditions it foll t i i
s R ows that the supporting hyperplane which

H———{xEcD

H b
T
kZ:l%ik Xi, = —1, k2=1 |“ik| =T 1}'
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where u; are uniquely determined-for a given supporting hyperplane H.
It is easy to see now that T e : :
HN B0,1) = {» € colni, = =signu;, k=T,m, |5] <1, 1 <N} =

= {x = colxi, = %fk, k=1,n |x| <1, <N}

Then H (M B(0,1) is a closed set of algebraic dimension N.
Let us denote by M the reunion of the exterior of B(0, 1) and the
set N in S(0,1) given by g _
N = {x scllizll =1, » = (%), %, rational, and
%; # 0 for a finite set of indices}.
We prove now that for this set M, P, is a weakly countable multi-valued

metric projection:
We have immediatly -

Py(0) = N, and hence card Py(0) = N,.

It x =« B(0,1), » # 0, it follows that there exists an %, € Fr B(0, 1) and
an A € (0,1) such that x = Ax,. Let H be a supporting hyperplane of
the unit ball which passes through x,. The existence of a such hyper-
plane is guaranteed by separation theorems. (see m. H. sSCHAEFER [3]).
We have

Py(nxg) = 2xy -+ (1 — W) Py(0) =
=fz= co|x¢k = x?k, k=1, mn, G A— v + (1 — ANa,,

ol < 1,4 #1434y ..., 4, and @, - 0 when 7 — o},

where x?k and %) were given in the first part of the theorem. It is easy
to see that «; can be chosen such to x, be all rational. Moreover, since
129 < (1 — /2
for any ©>N,>2,, all the a;’s can be chosen —Ax%/(1 — A), for ¢ > N,.
Since ;
;] = 1A% + (1 — W] < Aw ]+ (1 — V|| < 1,
for every ¢ + 2y, 45, ..., 1, and %, € {—1, 1}, £ = 1, # and since the choice

of «; with the previous properties can be made for a countable number
of points from

Pyu(xxe) N E(O,l) N M,
it follows that we have
Ro > card Py(x) = card Py(rx,) > card (Py(2x,) N B(0, 1) N M) > &,-

Hence card Py(x) = 8y, for every ¥ = X\ M = B(0, 1) and P, is
a weakly countable multi-valued metric projection. Q.E.D.
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