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1. Introduction

In the papers dealing with the mathematical programming problem
in complex space this is formulated as an optimization problem of the
form :

Minimize Re f(z) subject to g(z) S,

where f:CP = C,igyC" —.C" andiS < G"1.S # 4.
Given the object function f and the feasible set Y = {z € C*/g(z) = S}
in the present paper some new optimization problems in complex space

are formulated, and then relations among the solutions of these problems
are established.

2. Notations
Denote by C*(R") n-dimensional complex(real) vector space, If z =
= (zj) € C" is a vector, then 27, 7 and 27 denote its transpose, complex
conjugate and conjugate transpose, respectively. If b & C is a complex
number, then Re b, Im b, arg b and |b| denote the real part, imaginar part,
argument, and modulus of b, respectively.-

3. Formulation of problems

Let ¥ be a nonempty set in C* and Iet £: Y - (.
In the papers dealing with the mathematical programming problem
in complex space this is formulated as an optimization problem of the form :

(PR) Minimize Re f(z) subject to z € V.
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If V= {x € R"g(x) <0, h(x) = 0}, where g:R* > R”, 4:R" » R,
and f:Y — R, then Problem (PR)is that of real mathematical program-
ming with m inequalities and p equalities.

Of course, given the feasible set ¥ < C”, Y # @ and the function
f:Y - C, we can also formulate an optimization problem of the form:

(PI) Minimize Im f(z) subject to z € Y.

Since Im f(z) = Re [—if(z)] for all z €Y, it follows that Problem
(PI) is of the same type as Problem (PR).

In general, the solutions of the problems (PR) and (PI) are not iden-
tical (see the examples below).

Since, in Problem (PR) the imaginary part of the function f is not
taken into account, while in Problem (PI) it is the real part of f that
is not taken into consideration, it seems to be of interest to study prob-
lems in which both the real and the imaginary part of f are simultaneously
considered. The solutions of these problems will make a compromise bet-
ween the solutions of Problems (PR) and' (PI), minimizing simultaneously
both the function Re f and the function Imf on Y.

A problem in which one takes into account simultaneously both the
real and the imaginary part of f is the following:

(P,) Minimize Re A(z) subject to z €Y,

where A = Ay 4 12y € C (2, A, € R), is a fixed complex number.

If A = 1, then Problem (P,) turns into Problem (PR), while if A =3,
then Problem (P,) reduces to Problem (PI).

Of course, Problem (P,) is of the type of (PR).

Another example in which both the real and the imaginary part of
f are simultaneously taken into consideration is the following:

(PM) Minimize |f(z)| subject to z €Y.
The problem
(Pminmax) Minimize [max {Re f(z), Im f(z)}] subject to z €Y,

is again a problem in which one has to minimize on Y simultaneously
both the real and the imaginary part of f.

Naturally, the problems (P,), (PM), (Pminmax) can be considered as
particular cases of the problem :

(PF) Minimize Re F(f(z)) subject to z €Y,

where F:C — C is a given function.

Obviously, Problem (PF) is of the type of (PR).

Another point of view in dealing with the problem of minimizing simul-
taneously both the real and the imaginary part of f on Y, might be the
following : a point z° €Y should be a solution if

Re /) < Re fet) ) = 1m0 > I /)
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and

z €Y
Im f(z) < Im f(2°)

We give in this sense the following
DEFINITION. Let Y be a nonempty set in C* and let f:Y - C. A point

2° €Y 15 called a v-minimum point with respect to f on Y if ¢ _
no pownt z €Y such that ? / if there exists

= Ref(z) > Ref(2').

Re f(2) < Re f(2°)
Im /(z) < Im /(")

f@) # f(2°).

The problem of determining all v-minimum points z € Y wi
. t =
pect to f on Y will be denoted by ¥ e res

(PV) v-Minimize f(z) subject to 2 €Y.

A v-minimum point with respect to f on Y will also be called, a

v-mlg}mun;g 1)011111: If'or }E;r;:blem (PV).

xampies. 1. et f(z) =2z —zforallz € C, let Y = {z € C/|arg 2| €
< w4, Re(l — z) > 0}, let F(w) = w* — 2w — ww for all z{e) S C,/‘angd lle‘c
A =1+ 4. Problem (PR) has the solution 2* = 1/2, Problem (PI) has the
solution z# = 1 - 4, Problem (P,) has the solution 2* = (1 4- 4)/2, Problem
(PM) has the solutions 2* = 0 and z5 = 1, Problem (Pminmax) has the
solution 2 = (1 4 (,/2 — 1))/2, Problem (PF) has the solutions z = (1 +
+ #)/2 for all ¢ € [—1, 1], and Problem (PV) has the v-minimum points
2= (14 4t)/2 for all ¢ < [0,1] and z = s + 4s for all s = [1/2, 1].

2. Let f(z) = (1 —4)(#* 4 22) + 2(1 4 6)2z — 42 for all 2z € C, let
V={z = Cllargz| < =/4, Re(l —2) >0}, let F(w) = (1 4 i)w for all
w < C, and let A = 1 4 4. Problem (PR) has the solutions z — (1 4 2t)/2
tor all / = [—1, 1], Problem (PI) has the solutions z — (s + 7)/2 for al
s € [1,2], Problem (P,) has the solution 2! = (1 +- ¢)/2, Problem (PM
has the solutions 22 =0, 22 = 1 and 2* = 1 4 4, Problem (Pminmax) ha
the solution 28 = 7! and Problem (PV) has the solution 28 — zl. i

4. Results

We shall new establish relations among the solutions of Problems
(PR), (PI), (P,), (PM), (Pminmax), (PF) and (PV).

TUROREM 1. Let Y be a nonempty set in C* and let f:Y — C. Let
F:C - C be a function satisfying the following condition :

w,u < C

(1) Rew < Reu R
Imw < Im u = Re F(w) < Re F(u).

w# U
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If 20 = C s a solution of Problem (PF), then z° is a v-minimum
! Problem (PV). ‘ o
pmij;(;)t)f. VOObveious(ly, lve have z° = Y. Assume that z%is not a v-minimum
point for Problem (PV). Then there exists 2! € Y such that
Re f(z) < Re f(z°)
(2) - o ImfE) < Re f(z°)
f&) # f(2°).
it f 7 9), i.e. 2% is not
By (2) and (1) it follows that Re F(f(z)) < Re F(f(z ), 1. .
a soiu)’gio(u) of Pr(o}l]em (PF)..But this 'is a contradiction, therefore z° is
-minimum point for Problem (PV). :
; VE:;'.LOLLARY] L. Let Y be a nonempty set in C* let f:Y > C and let
A=A irg € C with Ay, 2y > 0 be fixed. . . ‘
I/};t = ZC” s a soluti:m (ny Problem (P,), then z° is a v-minimum point
or Problem (PV). ‘
: Proof. Apply Theorem 1 for the function F:C — C defined by the
formula F(w) = xe for all w < C. ‘ ;
OrméloaliOL(quRY 2. Let' 'Y .be a monempty set in C”,chd let [:Y - C be a
) th Ref(z) =20, Imf(z) >0 for all z €Y. .
fumt}onz“w; (O iifaf lolution of é%’oblem (PM), then z° is a v-minimum pornt
or Problem (PV). ;
A Proof. Apply Theorem 1 for the function F:C — C defined by the
f la F(w) = |w| for alll w = C. ‘ )
orm'lrl;EOR(Egm 2.|Llet Y be a nonempty set in C" and let Y ->C. Le
F:C > C be a function satisfying the following condition :

w,u s C
3) Rew < Reu p = Re F(w) < Re F(u).
Imw < Imu

If Problem (PT) has a unique solution z° € C”, then 2° is a v-mimmum
potnt for Problem (PV). A s 1 o ot

Proof. Obviously, we have z° € Y. Assume that z° is no v-mini-
muim ;J{i)(i{lt fo:r Proglém (PV), i.e. there exists 2t € Y with 2* # 2° suoch
that (2) holds. By (3) and (2) it follows that Re F(f(z!)) < Re F(f(2°)),
which contradicts the fact that 20 is the unique solution of Problem (PF).

COROLIARY 3. Let Y be a nonempty set in C” and let f:Y — C. Let
A=+ 1%, € C with A, Xy > 0 be fixed. If Problem (P;) has a unmigque
solution z° € C*, then z° is a v-minimum point for Problem (PV). i

Proof. Apply Theorem 2 for the function F:C — C defined by
F(w) = aw for all w € C. _

(U))COROLLARY 4. Let Y be a nonempty set in C" and let fiY-C If
Problem (PR) kas a uwique solution z2° < C", then z° is a v-mumimum point
for Problem (PV). :

Proof. Apply Corollray 3 with A = 1.
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COROLLARY 5. Let 'Y and f be as in Corollary 4. If Problem (PI) has
a wnigue solution z° = C*, thew 2% is a’ v-mimimum point for (PV).

Proof. Apply Corollary 3 with A = 4. i it

COROLIARY 6. Let Y be a nonempty. set in C* and let f:Y - C. If
Problem (Pminmax) kas a umnique solution 2° = C", thewn 2° is a v-minimum
point for Problem (PV). : i !

Proof. Apply Theorem 2 for the function F:C — C defined by the
formula F(w) = max {Re w, Im w} for all w < C,

THEOREM 3. Let ¥ = C*, Y # @ and let f:Y - C. If 2= C* is a
common’ solutton of Problem (PR) and (PI), then 2° is a v-minimum point
for Problem (PV).

Proof. Obviously, we have z° €Y. Assume that 2° is not a v-mini-
mum point for Problem (PV), i.e. there exists 2! € Y such that (2) holds.

If Ref(2') < Re f(z%) and Im f(z\) < Im f(2?), it follows that z° is not
a solution of Problem (PR), which is a confradiction.

If Ref(z') < Ref(z°) and Im f(z') < Im f(29), it follows that 29 is not
a solution of Problem (PI), which is a contradiction, too.

Therefore, 2° is a v-minimum point for Problem (PV).

THEOREM 4. Let Y be a nonempty set in C* and let [1Y - C. Let
F:C - C be a function satisfying condition (3). If 20 € C" 4s a common
solution of Problems (PR) and (PI), then z° is a solution of Problem (PF),

Proof. Tet 2° be a common solution of Problems (PR) and (PI). Then
Re f(2°) < Ref(z) and Im f(z°) < Imf(z) for all z € Y. Since the function
F satisfies Condition (3), it follows that Re F (f(z°)) < Re F(f(z)) for all
z €Y, ie z°is a solution of Problem (PF).

COROLLARY 7. Let Y = C*, Y s J and let f:Y — C. If 20 = C* 4s
a common solution of Problem (PR) and (PY), then z° is a solution of Prob-
lem (Pminmax).

Proof. Apply Theorem 4 for the function F:C — C defined by
F(w) = max {Re w, Im w} for all w = C.

COROLLARY 8. Let Y < C*, Y # @, and let f:Y — C. If 20 « C" ¢s
@ common solution of Problems (PR) and (PI), then z° is a solution of
Problem (P,) for any A = A\ + ir, = C with Ap 2y = 0.

Proof. Apply Theorem 4 for the function F: C — € defined by F(w) = -
= Jw for all w = C.
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