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Let (X, |I.1lx), (¥, l.lly) be two real normed linear spaces such that
Y C X andlet A > 1. We assign to each nonempty set M CYaset My xCX
in the following way : x € My x if there exists no ¥y <Y,y # x such that

Hy — m|ly < Alx — m||, for each m « M.

For y, €Y and » > 0 we denote

By(yo, ) ={y € Y:lly — polly < 7}
Then obviously ¥ € M i\',x if and only if the set

) By(m, Al % — mily)
is either empty or {x}.
When Y =X, ||#|ly = |x||y for each ¥ € X and A —= 1, then for
M C X, the set My is the set of minimal points with respect to M stu-
died by B. BrAvzamy and B. MAUREY in [1], [2] and denoted there by
min M. When Y C X, |||y = ||yllx for each y € Y and A = 1, then for
M CY, the set M}/,X was introduced and studied in [3] and denoted

there by Myyx. When ||y|ly = ||y||x for each y €Y and A > 1, some
results of this paper have been announced, without proofs, in [4].

In the next remark we extend for M;)‘(,x some elementary properties
of min M given in [2] (see also [3] for the case llvlly = lI¥llx for each
¥ €Y and A = 1), the proofs being similar and simple.
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Remark 1. Let' M be a nonempty subset of Y and % > 1. Then :

a): For. each real « we have (ocM)i\/,X E= Ochx,'X', TG :

b) For each y €Y we. have (M +y)bx = M} 5 + y.

¢) If MCLCY then M C M}y CLyx. If M is a dense subset
of L (in the ||.|]y topology) then My y — L} .

d) If M is a bounded set in both I|.1ly and ||.]],, then M}y is a
bounded set of X.

In Remark 2 of [3] we gave some simple connections between M Yy

and My,x, as well as M x and My y, when H¥lly = lIyllx for each y € Y~
In téqe next remark we extend these results, the proofs being straightfor
ward.

Remark 2. Let M CY be a nonempty set and A > 1.

a) If |lylly = llylly for ‘each’ ¥ =Y, then A

1) Myy CMyx O Y
(2) lwg’,x C Mxx/x
b} If ||y|ly < |lylly for each y €Y, then
3) Myx Y C My
In' particular, if ||y||y = [|y||y for each y =Y, then
(4) My =MixNY
c) If 1 < & < p, then
() Myx CMyx |
Fxamples showing that even when || Yy = |I¥llx for each y €Y, the

inclusiqns M;cy CM%Q,\- and M;Y CIW;/‘X are strict in general have
been given in [3]. Other examples showing that the inclusions in (1), (3)
and (5) could be strict will be given after Remark 3 below. Clearly, when
M ={m}, meY then M}y = My = M}y = M. When M — fmy, m,},
My, Mty Y, My #£ m,, then these equalities are no longer true in general,
as the results below will show (see formula (6) and Example 1), but
when ||y|ly = ||y||x for each y €YV and A~ 1 then these equalities hold
(see Remark 3). i

When X is a normed linear space, we shall denote by ex B,(0, 1)
the set of all extreme points of B,(0,1). For x,, 2, € X, we denote T%0,%,] =
= {o# + (1 — a)%,:0 < a < 1}, it '

- In [3], Theorem 1, we have proved that when (X, ||. ) is a normed
linear space, ¥ a linear subspace of X (i.c., when Wy = II9llx = |yl for
each y V) and M = {my, my}, my, m, €Y, m, # m,, then

I et ARy | (R o Oy
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and ‘'we' have. My.y = [m,, my]+if rand only if (my — my)|||my — m,|| e
€ ex By (0,1).

Remark 3. When [|ylly = ||ylly for each y €Y and M = {m,,m,},
my,m, €Y, m{ # m, then for each x> 1 we have’

(7) M3y = Mikx=Myx = M

Indeed, for A > 1 we have, by (5) and (6) that M}y T [my, m,y]. Let
= omy + (1 —a)my, 0 <a<<l and let y €Y, y=pm, + (1 — p)m,,
B = ai We have x # y and. ||y —m|lx. € Mjx — m,||y, that is ¥ = M5 .
By Remark lc) it follows M — M3 x. Hence (7) is proved.

Now we shall give examples showing that the inclusions in (1), (3),
(5) are strict in general. '

Example 1, In order to show that the inclusion in (1) could be strict,
let X be the linear space of all real sequences ‘_x = (&, ..., &,...) with

. _ -
E |&;| < oo endowed with the norm ||x||,= ||%||, and let Y = X endowed
i=1

with the norm ||3|ly = ||¥|ls. Then for cach y € Y-we have ||y|ly < ||ylly
Let %:be: an integer greater :than-3A and let m = (v;, ..., 7,, ...) €Y
where %, =1 for n. < krand 0, =0 for n > k. Let M = {0, m} CY. We
show that 2m = Myx N Y. Let y €Y such that |[y|ly < [|2m|l; = 2%
and ||y — mlly < Al 2m A'MIIX._é A Then A = ||y — ml|y, = [tm)ly —
— ¥y =k — 21 which is imhpossible since %k > 3A. Therefore 2m =
e Myx (Y. By (6), (for » =1) or (7), (for %> 1), 2m & My and so
in this cas¢ the inclusion in (1) is strict. This example shows also that
when the assumption ||y|ly, = ||y||y for each y <Y is not fulfilled, then
it can happen that M i\/y # M )Af;,-,\», or. M 7{\ # My y, for some sets M =
= {my, my}, mym, €Y, m, # m,.

Example 2. In order to show that the inclusion in (3) ‘could be strict,
let X be the same linear space given in Ixample 1 endowed with the
norm |[|xl|y = |[#]ls and Y = X endowed with the norm ||y|], = e,
Totn 2205 i 160 m, = (1,200, Tyl = Y ety where 7, = 1/n for
j < n and 7, =0 otherwise. ‘Let M = {m,:n=1,2,...}. Since 0 is
in the |[.|]y closure of M, by: Remark lc), it follows 0 & M}y, On the
other hand, 0 & M?q‘x_since: for ¥y = (10,0, ...) € Y, we have for'each
n, ||y — mully < A|m,lly = A and so the inclusion in (3) is strict in this
case. :

Example 3. Finally, to show that the inclusion in (5) could be strict,
let (X, ]|-}|) be a normied linear space such that ex By(0,1) is nonempty.
Let m ='ex Bx(0,1) and M = {O,m}. By Remark 3 we have Miky = M
for A > 1 and by [3], Theorem 1, Myy = {am:0 < « < 1}.

By Remark l¢) it follows that we have M ,A/,X CY for each M CY
if and only if Y@;X =Y. We shall givé now -an equivalent condition for
YVix =Y in terms'6f the 'existence of some ‘mappings of X onto Y.
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~

Let P(X,Y, %) be the set of all mappings P: X — Y with the follo-
wing properties :

®) Blax) = «B(x) (* = X, « = R)
©) P(x +y) = P(x) £y (x=X, y<sY)
(10) NPy < Allxllx (* = X)

THEOREM 1. Let (X, |[-|lx), (Y, ll-lly) be two normed linear spaces
with Y C X and let X > 1. Suppose that for each y <Y we have ||y|l, <

< Ml#lly. Then P(X,Y,2) # O if and only if Yy, =Y.
Proof. Suppose there exists P & P(X,Y, A). Then for each ¥ € X\Y
and each y €Y we have by (8)—(10)

HP(%) — Hly = I1P(x — Mly < Mlx — yllx
which shows that x & Yi‘/,x and so Y%]X C Y. By Remark lc) it follows
Yix=Y.

Conversely, suppose Y};_X =Y. If X=Y, then for each x € X, we
define ﬁ(x) = %. Then (8), (9) are obviously fulfilled, while (10) follows
since ||I'3(x)l|y: #lly < Mlxlly. Suppose now Y # X. Let X/Y Dbe the
quotient space and we denote by x the equivalence class of ¥ € X. For
each one-dimensional subspace G of X/Y we shall fix an element }G stich
that G =sp [;G]. Choose a representative s ;G. Since %, € X\ Y,
by hypothesis x,; « Y;A,,X, and so

(11) ﬂy By(y, Mlxe — yllx) & @.
JVE

Choose y; in this intersection. Let now % € G. Then x = ax, for some
o esR If v = Zc\ then x = axg 4 ¥ for some y €Y. We define P(x) =
= ays + . So we have defined P for the elements of the equivalence
classes of each one-dimensional subspace of XY, wlgence P:X -Y is
well defined (but not always unique). Then clearly P defined as above
satisfies (8)—(10). Let us note that (10) holds using either the fact that
¢ belongs to the left hand side of (11) (for x € X \'Y) or the assump-
tion ||y|ly < Allylly for each y €Y (for x = Y). )

When ||y|ly = ||yllx for each y €Y and A = 1, we gave in [3] the
following result. Let us denote Sy = {x = X :||x||, = 1}, sm Sy the set
of all x € Sy such that there exists a unique x% € Syx.with x} (x) =1,
and P(X,Y,)) the set of all linear projections P of X onto Y with
Pl < A

THEOREM 2. ([3], Theorem 2) Let (X, ||-||) be a normed linear space
and Y a closed linear subspace of X such that S, C sm Sy. Then P(X,Y,1)
contains at most one element and P(X,Y, 1) # @, if and only if Y},,x =Y.
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By the first part of this result. follows the implication
! ! | plication 1) = 3) of
;l_‘heorgm C3§ [?]t ]wlwhlch states that if ¥ is a very smooth Bana)ch sga((:)e
le, Sg Ere en each closed subspace of E is th
one contractive projection in E**. i e s
COROLLARY 1. Let (X, ||-]|) be a normed lineay space and Y a closed

linear subspace of X such that Sy Csm Sy. Then f’(X,Y,l) = P(X)Y,1)

~

and P(X,)Y,1) contains at most one clement.

Proof. 1et P e ﬁ(X,Y,l). By Theorem 1 it follows Y., — ¥y
by Theorem 2, P(X,Y,1) contains exactly one element, 5;5}\ P, Sial‘llég
for each ¥ € X, both P(x) and P(x) belong to the left hand side of (11)

(for A =1, x5 = and |[y]|y = ||y/ly = || i
’ . x = ||¥|] for each y e ¥ , which
we have shown in the proof of Theorem 2 [3], is a sii?gletmi. The?‘efo?:

~

P(x) = P(x), which completes the proof.

TLet (X, ]|-]]) be a normed linear s ace and Y a linear s

For each x = X let Py (x) be the setp of all best appn;e}dm:;i}i)jgs c(?f O:f
out of Y, ie., Py(x_) ={Jo €Y :||lx — y,|| = dist (%,Y)}. Y is called (see
e.g, [7]) a proxmminal subspace of X if Py(x) # @ for each x = X, and
a CebySev subspace of X if Py(x) contains exactly one element for’each
% € X. We shall denote the elements of Py(x) by py(#).

COROLIARY 2. Let Y be a proximinal subspace of the normed linear
space (X, ||-]) such that S, Csm Sx_a'nd l2x(®)]| < ||x|| for each Py(x) =

€ Py(x) and each x € X. Then YV ) _
h’nea: Moreover P(X, ¥ 1) i s a CebySev subspace of X and Dy s

Proof. If 'Y is?”not a 2Ceby§cv subspace of X, then there exists
% € XNY and py (%), g’)(xn) € Py(x,), Zbg})(xo) 7 ibgf)(xo)~ In the quo-

N

tient space X/Y, let Go,\ = sp [#%,] and for each one-dimensional subspace
GC XY, G#G,y, let %, «G such that G — 5p' %] Choose % < 7,
and py(x;) € Py(%;). We denote ;\Gu = ;0 and xg, = x,. |

Let now G be a one-dimensional subspace of X/Y and ¥ <= G. Then

N

;c\:ocxcforsomeocGB.IfxEA?thenx:ocx+ for s
; nl pis ¢ Ty for some y €Y.
We define for G = G,, B(x) = ap{(x,) + ¥ ©=1,2 and for G # G,,

Py(x) = apy(%g) + 5, i =1,2. Then P,: X 5V, § — 1,2 are well defined
and it is easy to show that Pt = 1, 2) satisfy (8) and (9). Since P, %) =
€ Py(%), using the hypothesis |2y(#)] < ||#|| for each Py(%) E'Py(x)

and each.x & ’.3( we haxe P; = P(XY,1), ¢ = 1, 2. This contradicts Corol-
lary 1 since Py(x,) # Py(x,). Therefore Y is a Cebytev subspace of X

~

and since p, = P(X,Y, 1), using again Corollar 1 it foll i
finear and B(X, Y. e g ag y 11t follows that p, is
When Y is a proximinal subspace of X, using an argument simi
: , simil
with that of Corollary 2, we can choose a selection gj)y(x) GgPy(x), (xlil)g

~

satistying (8), (9), and since |12y(#)l] < 2|%]| for each x < X, P(XY,}) #0
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for each A = 2, and so by Theorem 1,'Y§,X —Y for each A > 2. Using
this remark and a now classical result of J. Iindenstrauss and L. Tzatriri
[5] it follows that for A > 2 we have not a result similar with Theorem 2.

We conclude this paper with the following possible generalization:

for each M CCY and each A > 1, let MYy be the set of all x = X with
the property that there exists no y € Y such that lly — mily < Allx — m|lx
for each m & M. Clearly, this set is larger than that studied in this paper.

When ¥ = X, ||#|ly = |1#]|x for each ¥ € X and A =1 then My is the
set of all ,closest points to M’ (see e.g., [6], where a characterization
of a Hilbert space of dimension at least three is given using this notion).
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