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1. Introduetion

This paper is concerned with the numerical evaluation of derivatives
and principal values of integrals from analytical functions. To compute

luation of residues at isolated singularities.

ture rules. For Cauchy principal value integrals w
due to prmssnus [8] and wunTER [4].

In the next section we consider the case that integrand has isolated
singularities near the integration interval. We develop a formula based on

Gauss— Chebyshey quadrature rule and on residue theorem. Ag

ain, to
evaluate residues, use can be

made of formulae given in section 2.
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2, Numerical differentiation formulae

Let f(z) be an analytical function without singularities in the neigh-
bourhood |z — zy] << R of the point z = z,. We have

@1) Sl =fle) + 20 ) A+ L ez

Let 2z, =2y + h exp {1 z—“]}, (=0,1,...,2—1) be the complex roots
n

of the equation

22) (r — 20" = I

where 0 < % << R.
The relation (2.1) gives

7

(23) 5 (5 — o)t fle) = 3L 5 gk

i=1 m=0 m! =1

But we have

for 1<k <n—1

H 0
(2.4) Doz — 2)F = \!n for k=0
inh*  for kR=mn

and relation (2.3) becomes

1 - A —k ) = S B)(z) = mn -f(k'*—"m)_(ZO) =1 . —1
.(2.5)1.:21(2, 20) 7 flz) = m = —{—nm:lh Tm (k=1, ..., n—1)

Hence we obtain the numerical differentiation formulae

”

X (2 — 20) =Rf(z)

(2.6) f¥(zy) = R1I=L + Ep, E=1,2...,n—1
n
where
R iz
—_ 57 i
(2.7) E;. k! ";1 )2 ra——

is the error.
The formula (2.6) coincides with that given by rynmss [6], by a
more complicated way. The expression (2.7) puts into evidence the depen-

dence of the error on 4.
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By using the value f(z,) we can give also an expression for 7")(z.).
Thus from (2.2) and (2.3) we obtain P il

H

(n) 00 m-+1)n,
(28) T (a1 — 20) 7" fle5) = mh=f(zg) + 0 L g gy 5 o )

e 1 [ + 1)n] !
Hence
'21 J(z) — nflz,)
(2.9) J"(ze) = nl f—;;ﬂ——— * B,
(2.10) Eppm — 1 30 gy L4 e

me=1 [(m + Dn]!

The relations (2.6), (2.9) allow us to compute the derivatives to #-th
order at the point z, by using # ++ 1 complex values of the function f(2).
If the restriction of the function f(z) to the real axis is a real function
the values of the function at points located in the lower half plane can
be obtained from those from the upper half-plane and consequently the
number of function evalutions reduces near to the half.

To obtain more accurate formulae we can increase the number #
of points. Thus by doubling the number of points we obtain formulae with
the error of O (2%") order at the price of more » function evaluations.

Alternatively we can use the extrapolation to the limit [2]. Let

o 2 (e — 20 ™H f(a)
(2.11)  DPh) = Bt i k=12 ...,n—1)

n

We have

(212)  f(z) = DPR) — w1 220y SN o S5 )
(k + n)) mZa (k + mn) !

(2.13)  f(z,) = D %) B e g s gy

or T (ko)) m=2 2™ (k) |
and hence
(214) f(k)(zo) o D;@l) (l)-{- B 2 1 — 2(1—m)—n B f(k+mn) (2)

2 m=2 2" —1 (B - mn) |

where

h

20 DO = — DOz
ko

(2.15) DY *{E :% (k=1,...,n—1)



26 DOREL HGMENTCOVSCHI 4

The truncation error in formula (2.15) is about 2” times smaller than that
given by relation (2.7) corresponding to 2# points. The extrapolation
process can be continuated. Thus the formula

Qg D(m 1) - pim—1)

(2.16) D ""(;‘jl:.__ ‘2”]__4 Ik (2’ 1)_ k=1, ...,n—1)
j=12 ...
m=1,2...,7

gives the approximation D{” to f®(z,) with error of order O (Am+1/2m»),

For k = »n the relations (2.15), (2.16) are still valid with the initiali-
zation

Z Fzg) — nf(z,)
nlL_.l__—

(2.17) DY(h) —

u h?

The obtained formulae can be used to determine the residue of an
analytical function at a polar singularity. Thus if z = 2, is a /'th order
pole for the function g(z) we have

1 at-n
(2 — 20)8(2)

1) dzlﬁl Z=1Z,

(2.18)

Rez {g(e), 20} =

and this derivative can be estimated by using the above mentioned rela-
rions.

If z = 2, is an essential singularity of the function g(z) we have in
a neighbourhood |2 — z¢| << R of this point.

(2.19) glz) = > > cilz — 2p).
j=—00
hence
(2.20) (2; — zo)8(2j) = mc_y + n} c,,k bR nZ _”k !

=
We obtain finally the formula
(2.21)

Rez {g(2), 2} = ¢4 =

(222) — 3 w4 “];’;——‘)

k=11
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The form of the error make impossible to develope on, an extrapo-
lation process. Consequently in order to obtain more accurate values for
c_, we must use the itterative procedure based on formula (2.21) by doub-
ling the number of points z;.

3. Numerical evaluation of prineipal value integrals

Let us consider the finite part integral

b

(3.1) I= S("ﬂlﬁ,dx

¥ — ag)”

%Xy € (a, 0); m = N

a

w(x) being a positive and continue weight function and f(z) a holomorphic
function in a domain including the segment [a, b].

We shall put

( — %™

n (ﬂ; —1) | f(ml)(xﬂ)}dx +

The first integral in relation (3.2) is a regular one and can be per-
formed by using the standard quadrature rules; the second one will be
analiticaly estimated. The derivatives in relation (3.2) for functions with
a complicated analytical expression will be aproximated by using the
methods given in the previous section.

Turther on we consider two particular cases.

a) If w(x) =1, a= —1, b =1, we obtain
( f(x) . Slr)
(" X X

! ————dx =5 —— __
(3 3) " (Y £ xo)m & r>;-{ H' (xr - .1‘0)'"
-1
m—2 c(§), " m—F
S (%0) 1 1 (=1
= lg B e T Ut T iy w7

1

f(m_l)(xo) ‘ln 1 1% - ” H,

Ry
(m— 1)1 1 4 7, T Fo

y=1 %y — %g

where x,, %,, ..., ¥, are the zeros of the Tegendre polynomial P,(x) and
H; the correspondmg weights. By R, we denoted the remainder.
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For m = 1 we have the formula for evaluation of Chauchy principal
value
1

I3 { " )
(34) S f(_x)dx — ZH’ Lx’)_ —|~f(x0) iln le 4 = 2 i } + Rl,n
r=1

lx—xo Xy — X, 1 4 x, 7=1 &y — X%,

For xy =0 and # even the formula (3.4) coincide, due to the sym-

metry of points %, ..., x,, with Piessens formula
1
(3.5) S J(#) dx — E H,M -+ Ry,
¥ y—1 F

1

Likewise for # old from (3.4) we obtain the formula

(3.6) S I gy — H, p(0) - 5 H, 1% L R,
X r=2

Xy

given by mUNTER [4].
In the case m =2, xy =0 and # even the relation (3.5) gives also
a simple formula :

1

8.7) [ L2ax = 30,0 —p0) |24 1 2 4 R,
it r= 2 = 7
b) For w(x) = (1 — x%)~12, ¢ = —1, b = 1, we have
! ] n
(3.8) S fdn | ms~ )
V. JFI_~ x”(x—xu)”’ “ rz;{ (xy — xg)"

RSO !

n 750 70 S (v — x4,

where x, = cos ((27 — 1)n/2n).
To avoid the difference of two close numbets we_shall put in (3.8)
%; as being the » distinct numbers %} = cos (Go—l— E]2”—1)”J(j=1,...,2n)
y n
where %, = cos 0,,.
For m = 1 we have
1

3.9 S J@) dx  _ mN~ ) — f(x)
(3:9) N =2 (x — %) nor=1  Fyr — %, + R

—1

In all this formulae the remainder can be evaluated as in the case
of the absence of singularities since the integrand in (3.2) is a regular
function for » = x,.
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4. Numerical q‘uad'ratufe fom_uilae for a funetion which has isolated
singularities. near. the . integration  interval

Let L be a closed contur enclosing the interval [—1,1] and f(2) an
analytical function in the domain enclosed by the curve I and having
in this domain isolated singularities at the points zq, z,, ..., z,,. We denote

by 4, s, ..., I, the zeros of the Chebyshev polynomial T,(t). We have
@1 fi) =3 LSty 31 S Tuf@dz | 1 Tuf()az

F=U(E— ) Tott)  7=12ni L (2 — 0 T,(2) iy (2 — ) Tp(2)
L; being the cercle |z — 2| = e.

From relation (4.1) we obtain
1
(4.2) S SO g m§~ ol (2 — In
JTon n;;{ficms 2n )+

~1

1 1
) - T,(t)dt 1 f(2) Ty(t) 2t
dz =S L VI B o I
(2) .sl \/1 — 12— 2) L 2ri ) T,(2) 4 S ‘/1 i ;E(t — 2 ;
= L

Fy Ly

5=1 Zn'i[w T,
7

—1
We can write

(4.3) To(2) = % [z + V& = D)" + (2 4+ JF = 1)
1

44 1) = (o Tud B

(44) () = P RN S (PN g 1

-1

with —x < arg (z 4- 1) < .
We have finaly

(4.5) GG R ST Lo & —vm)
V= T feon =)

— 2 éﬂ Rez { — j{z}. — o }
TR~ T B
where

(4.6) R, — L { /040 4

2ri T,(z)
L

In relation (4.5) the residues can be evaluated by eans of relations

(2.18) or (2.21).
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The remainder (4.6) can be estimated by using the method employed
in [1]. One can give similar numerical quadrature formulae based on

Gauss—Legendre method.

5.  Numerieal examples

I'he computation of the examples given bellow was performed on a
Hewlett-Packard 9825B calculator.

: ;
a) I(y) = g-___‘ff'—f e L1y E=E | T O yheEl
Yalvx -9 B Ly
0
In the same way as in [5] we have put
< 1 )
TR =, R S*JL'— :
O = TV e
0 €

For the first integral the change of variable x = ef? was performed. After-
words, both integrals were calculated with the aid of the ten points Gauss—
Legendre formula. We have taken e = 0. 2 and have calculated the prin-
cipal value integral by nising the formulac (3.4). The obtained value
1 (0.6) = —2.310490599 has nine correct sigpificant digits. In [5] by
using 44 function evaluations and double precision computation ten cor-
rect significant digite were obtained.

1
b) I(y) — S___ CL_,\' _:;i‘-h) 1.——-2{ —|~’—l’ . (}<y< 1
¢ .\/;\; (v — »%)° il [ L\

To compute this integral we have used ‘the same method as above
(with & = 0.25) and the formula (3.3) for the principal value integral.
The derivatives in this relation were obtained by using the relation (2.6)
with # — 4 and & = 0.025. Both regular integrals were evaluated by means
of ten points Gauss—Legendre formula. We have | obtained 1(0.7) =
— _ 1.668503578 with seven correct siguificant digits. The total number
of function evaluations was 24 ; this are favorable comparated with the
result given in [5] where eight correct significant digits were obtained
at the price of 44 function evaluations.

1 1' (1 — A’7)'71/2 dx A 2 1
X 0 3) = | b 0w AL ) by

21

This integral has a singularity at x ='h and for simall value of y it
possess a polar singularity near the integration interval. It was conside-
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red in [7]. For beginning the i

. g the integral was computed by using f
573;19) for y =5, 0.1 and A = 0.25 and 0.99. The Iesultadyerrorzgfogrmma
alue of n are included in the table bellow ‘ S

1(0.25, 5) — 1(0.99, 5) -

n 122916112 - 1072 4.60556191. 10~ % 1(()757"‘9‘11‘36 3{(2'59(%%1) B
ALNE K 31.25G85

Terror ISrror Iirror 1

TG “rror

2 24 107 —9.707 ‘ o

- 9. gt 1 26.97 :

3 2.31-10 ¢ 91079 15 11))3*) L

4+ —231.10n 9.0 5 19 196 b

5 27 .10 9.-10 23 2.20 (I)ﬁ

The obtained results for j — e |
r : results for 7 = 5 are better than those fr i
i:ﬂ f SI(‘)(,;IK ordfrt }(:t msltgmtudes. For y = 0.1 the accuracy is:‘.oI‘:a[.lffue-[c?&ec;.’u 1;;?
* presence of the pole near the integration interval
the accuracy in this case we combi icnige Bt ion 8- o
1 uracy his case we c ined the results of section 3 (f
(3.9)) with those given in section 4 (formula (4.5)). The resultatfe(?rlc};?é?

in’ evaluation of 7(0.25, 0.1) : : '
e e i_z((” 'y 4? “11.1)d (0.99, 0.1) are of order 10~ even for
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