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In this paper, we consider a vector spece ¥ of finite dimensions with
8 ={b, b, ..., by} as a bases and R (the field of real numbers) as a
range of values ; we shall introduce the concept of free set £ (£ < B) rela-
ted to a nonull subspace 4 of . Using this concept we shall characte-
rize the bases of the subspaces Ker A and Im V defined in [17]; we
make also some remarks concerning the free sets associated to Ker A
and Im V.

L. Introduction. The results in this paper are natural consequences
of what we got in [16], [17] and [18]. They make it easy for us to
tackle some concepts in the graph theory using a powerful accurate mathe-
matical apparatus, linear algebra,

Since we have defined the concepts of free sets related to a nonull

subspace of a linear space of finite dimensions, we shall continue the study
of the subspaces KerA and ImY that were introduced in [17], and we

Sets associated to this spaces.

2. Preliminary considerations, This whole paragraph is meant to pre-
Sent some definitions and results of [17] and [18] that are necessary to
follow and understand the further notes,

Tu this article we shall consider the notion of finite oriented graph defi-
ned in [5] where & — {ny, no, my, . . ., ny} is the set of nodes and @ —
={ay, a, ..., a} is the set of arcs. An arc @ < & will be marked g —
= n, my, w,m <= N, and to the graph G = (7, 4% we shall relate (see
[17]) the functions A*:@ - and A—: @ - M, where A *+(a) =% and
A~(a) = m.
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We call sncidence matrix (see [5]) of the graph G, the matrix A =
=(A) =12 ...,9; k=1,2, ...,q, defined as follows:

Lif n; = A *a,) # A (a,),
A= —Lif n, = A~(a,) # A *(a,),
0, otherwise.

| i X with
We shall denote by V[d, R], (see [17]) the set of the linear forms
@ as bases and R as value range (we denote by R the field of the real num-

q .
bers), X =) x4, x,< R, where - a, is the vector with all the %,=0,
k=1

except for x; = +1 and 0g the vector with all the x, = 0. Similarly,
we define the vector speace V[™, R] as consisting in all the vectors of

p .
the form Z = > zm,, z,< R, where Oy is the vector with all z;, = 0 and
i=1

4 n; is the vector with all z =0 except for 2z, = + 1 Practically,

Via,R] is R? and V[, R] is R®. _ o -
To the above defined vector spaces the following applications wi be

attached (see [17]): A : V[@, R] —» V[?!, R], qV: Vi, R] = V@ R] defi-

b q _ P ;
ned by A (X) = Z(Z Aoz, my, V(Z) = E(QA,; zi) - a,, where

t=1\k=1 k=1
q p Y
X =) xa,<V[aR] and Z = Yoam, e VIO, R
=1 i=
Out of the definitions of the functions A and ¥, results the fact
P

q )
that A (a,) :;Aink. k=12 ...,¢9 and V(n) = %A"a’*' ML .,

which means that A and V are two homomorphisms between Vid, R]
and V[ ,R]. They have as a matrix for linear transformation, the 1nclj
dence matrix of the graph G = < » @), and according to [15] it means
that dim V[d@, R] = dim Ker A + (dim Im ¥V == dim ImA) or:

g = dim Ker A + [rank (A) = dim Im V] (2.1),
where

Ker A ={X = [&, R]|V(X) = 0y} and Im V = V(V [, R))

linear aces in V' [d, R], (see [17]). ki ) ]
e In [li;]u}z:g have cons[sidere]d (a vector space of the finite d1mens101és
% with & = {by, by, ..., b,} as basis and R the values range, and, suy:
sequently, we have introduced the preorder relat1on_,,g : vyhere +XXE~
if and only if &+X) < &+(Y) and & (X) < & (Y), with &B&g_)X——
=0, =8|7,>0}, &(X)={, =8|, <0}, X)) =a&+X)U & (X),

and X = 2 xb,€ X.
i=1
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It was in [17] as well that we have defined the notion of minimal*
related to a mnonull subspace W of ¥ and we showed that any nonull

vector X'& W is of the form X = 3 X, with X, « %, minimal related
t=1
to W and X’ingor any 1 = 1,2, ..., m.

b4

As to a vector X :Ex,b,fe % we may say it is elementary as

. =1 . !
compared to W if it is minimal related to °® and %, € {—1,0, 1} for
any 1 =1,2, ..., n.

In [17] we particularized % to V[ R] and W to Ker A or/and
Im ¥/, we proved that any nonull vector X € Ker A is of the form X =

I X, with o, € R — {0} and X, elementary related to Ker A, and
=1 .

any nonull vector Y & Im V is of the form Y — 2 B.Y, with g, =R—{0}
=1

and Y, elementary related to Im V. (292).

J. Remarks on the subspaces Ker A and Im V. In this paragraph
we shall define the free set related to a nonull subspace of a linear space
of finite dimensions subsequently, making use of this notion we shall
characterize the bases of the subspaces Ker A and Im V, simultaneously
making the necessary remarks on the free sets as compared to these sub-
spaces.

DEUINITION 3.1. Let us consider % as a space of finite dimensions
and & its bases. A set £ < &, £ # s said to be Jfree related to a nonull

subspace W of %, if and only if for every nonuli X = % with $(X) < ¢
we have X & 949,

Remark 3.1. One can presently notice that if € is free and
€< & €% then @ is free.

THEOREM 3.1. If & = @ is frec related to Ker A and maximal (as
compared to the inclusion of sets) with this property and a4 < AN T, then,
there exists an unigue X" e Ker AN, elementary, so that X *] — @, + D x Ay,

o, <§
o
with %, = {—1,0, 1}

Proof. If a, = A&, then, having in view the maximality of &, the
set & U {a,} is no longer free related to Ker A ; that means that there is
X eKer A, X # bg with a(X) = g | {#,}. (3.1)

Taking into account (2.2), it means that X — b, %X, with o, R —
i=1
— {0}, X, elementary in Ker A and X5 X forall §=1,2 ... m.

* a vector X € ¢ is said to be manimal related to a nonull subspace ¥ of %, if and
only if X is nonull, X < op and for any ¥V € % with B(Y) < H(X), we have ¥ & °F.



60 DANUT MARCU 4

But if }?,.E!X, then, a(X ;) € 4(X) and according to the relation
3.1. we have &'(X"‘.) < § U {a,}, which means that X , being clementary,
is of the form X, = xi'a, + > xa, with xf7 € {—1,0, 1} and

aaeﬁ
e {—1, 1}

If %1 =0, then, 4(X,) = &, i.e. § is not free related to Ker A ;
contradiction with the above hypothesis.

If there exists 7, € {1,2, ..., m}, so that 2 = 1, then we take
X = X',;n. But, if = — 1 for all +=1,2, ..., m, we consider the
vectors X,; = —)?,-, 1 =12, ..., m, which are obviously elementary in
Ker A (see (1.21) in [17]) and for which &(X;) < & | {a,} for every
1=1,2, ..., m. Of course, there exists now ¢, € {1,2, ..., m} for which

) = 1 and we take X = X,
So, it exists X =g, >3 xa[,k]aa, elementary in Ker A. Let us

P
a_<
[

prove now that X is unique. To this purpose let us consider X = Ker A,
elementary, with @(X) < & U {a,} of the form X = a, 4 2 %4,

(53
aot

Since Ker A is a linear subspace, there results the fact that K
— X1 belongs to Ker A, which means that Y (X, — #2) a, € Ker A.

a <
As a(fc — X)) < § and § is free related to Ker A, it means that X =xm
(Q.E.D.).

Let us consider & = |@\_§] and let us re-mark the set & as follow :
A=V, Ve..., Vg, U, Uy, ..., U} = {ay, ay, ..., a,}, where V, €4\,
«=12 ..,k and Uy €9, =12 cooom, with m = q — .

Remark 3.2. Having in view the theorem 3.1, it means that for

any a< {1,2, ..., %}, there exists an unique X = ¥V, 4 ;Zﬂ x5 U, ele-

mentary in Ker A with x‘[;‘] € {—1,0,1}

DEFINITION 3.2. Let % be a linear space over R and (X, X,, ..., X))
a vector system of %. We call the system (X, X,, ..., X,)> @ systeme
of gemerating vectors of %, if any vector X = % can be expressed as a

linear combination of these vectors: X = » ,#,X, with 7, = R, X, = %,
=1

1=12 ..., n
THEOREM 3.2. The vectors XWX . XU wmake up a system of
generating vectors of the space Ker A.
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Proof. Let X be a vector of Ker A. According to the way re-marked

k 3
the set @, it means that X -- Ex“Va, - ExBUﬁ, with x,, peER, a=
_ yy =1 fi=1 g
=L2 ...k, =12 ..., m

Using the components of the vector X we define the vector

" ® % E om
X=YomXe = S nl + 35 3 0 iy,
a=1 a=1 a=1 f=1

vector for which we have:

m »k— n . E F
X = — i B ) [&]
R mls = 3 2w s = Xoaaly — 553 a0, —

' But, (X — X) Ker A and taking into account the relation (3.2)
it means that &(X — X) < {U,, U,, ..., U,} =9. Since § is a free set
related to Ker A, it results that X — X — 0g.

kb
So, X = 3 %, X, (QE.D.).
oa=1

DEFINITION 3.3. Let ® be a linear space over R, and X, X,, ...
..., X,)> a vector system of %¥. The system (X, X,, ..., X, is lLncar

. . - N
tndependent if for any null linear combination ) 7, X ; = Og, it results that
=1

r,=0, i=1,2 ..., 1n where ¥; €« R and 0y is null vector of the
Space %.

DETINITION 3.4. Iet ¥ be a linear space over R and <{(X,, X,, ...
.., X,u> a vector system of ¥. The system <X, X,, ..., X,) is a bases
of the space % if and only if (X, X,, ..., X, > constitutes a linear inde-
pendent system of generating vectors of the space %.

THEREOREM 3.3. The vectors XL x| X% vepresent a linear inde-
pendent system in the space Ker A.
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Proof. Let 7 XM 47, XP1 4 oL 4 vy X* = 04 a null linear combi-

ation of the vectors X1, X2 _ . X, Having in view the remark 3.2.
n 2’ s | i /

we obtain :
1
0, — 7V, 4+ &N Uy, + a0, + ... + 15, Uy 4
p i
21
2] S A F
4 7,V 4 12Uy A+ 19%5 Ug -+ oo+ 12%; U +

"

' S BT [%
] [k} A rxlU- =
+ r5Vy+rpafUstrp a0, + o+ 7y bt
1'J-x£j])U2 + Tiat +

.
i) =
L

N
[7]
:7’1V1+7’2V2+ +7",';V',j+ [;ﬁxl )U1—|—(

(3.3)

L U])
=

3 ‘ " ing i he
v, 4 = ..., m, and taking into account t
Denoted by o; = ;71-9@ s 1 1, 2,

relation (3.3) we obtain: O =7V, +7nVe+ ... + r=V4 + o Uy -+

0, Uy + .. Fo-U-—. (34) . B
" 2BuZ:c Vo Ve oo Vo, U, U, ..., U;} e -{(11, Ay, - ..y Byt ; a, ‘ztind
havi in mind that @ is a bases of V[4, .R] it means that t‘e sys3e2r)m_
(?/Vm% Ve, Uy, Uy U-> is linear independent and from (3.

1s il TWesy L’ ’ T Ry n
we have:

b yo, = =0, = 0. (35)
9 Cee ‘ . .
Thus 1f1 y, X —'— 1’2X[2J —|— RN ~|— 7’—kX[k] S Oa, then, havnlg in view
2y 1

(3.5), it means that the vectors X0, Xz . X ) make up a linear inde-
nd i ‘ L.D).
ndent system in Ker A. (Q.F ' .
PC Re myar k 3.3. Having in mind the theorems 3.3, S.ZXEﬁl(iXEtz?klng
into account the definition 3.4, it means that the vectors , .
g ' ¢ space Ker V.
..., XU form up a bases of the space . : , -
’ PRIINITION 3.5. A linear space ¥ is cousidered to have the dimen

‘-———7”];:(1)1:(0'&:

on n if ' . . —
p a) there exists in this space a system with # linear independent vec
tors (# is a nonull integer) and ‘ . "
lg) every vector system of % which contains more than » vector 1s
not linear independent, better to say it is linear gfpf”j}fma oy v b
' S t tha e dim

, rk 3.4 We can also add the fac _ ‘ ;
spaceR ‘?(é Irrzzglrezem‘cs the maximal number of linear independent vectors o
this space. : | )
Rle mark. 3.5 Having in mind the remark 3.3. and glhe (if'acznz?jn

if a linear space admits a basis with 7 vectors, then it has the dim
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#, we can say that the dimension of the subspace Ker A is equal to %, i,e.
dim Ker A =% (3.6.).

Remark 3.6. The above demonstrated things lead us to the follo-
wing conclusions : using the concept of free set related to a nonull sub-
space ‘¥ of a linear space ¥ of finite dimensions, and particularizing the
space ¥ to V[d, R] and the subspace W to Ker A, having in view the
theorem 3.1,, the remarks 3.2. -and 3.3., we obtain a bases for the sub-
space Ker A, which is mnade up of the vectors Xt X2 X&), These
vectors are uniquely determined related to the set g cd(|F] =m =
= ¢ — k), which is free in Ker A and maximal (as compared to the inclu-
sion of sets) with this property. :

Practically, the determination of bases for Ker A is 'to find a set
J < 4d, free related to Ker A and maximal with this property ; the cons-
truction of X, o = 1,2 ..+, k following from the remark 3.6.

Remark 3.7. Let us cousider § < d, free related to Im VV and
maximal with this property. By means of a theorem analogous to the theo-

rem 3.1, we can prove that if a, = 4\ &, then there is an unique Y <
€ ImV/, elementary, so that

Yk — a, + Ej’ik]“w i _3’o[¢k]€ {_1’ 0, 1}.

«
uag]’

If |a\§| =75 and re-marking the set @ so that @ = (W, W,, ...
oo W, T, Ty LB = 0y, 84000, a), Wy o a~ g, =12 .5
and T, € §, o — 1,2, ..., 7, with 7 — g — s, we obtain the vector unique

7

S 8]

system (Y01 YR, O VEDY with YIB! — Wo + 5yl
a=1

€{=1,0,1},'B=1,2, ...)5. This vector system can be proved, by a
reasouing similar to that made iu the theorems 3.2. a.d 3.3. to constitute
a basis for the space Im V and, thus, dim Im v — ;. (3.7.).

Taking into account the relations (3.6), (3.7) and (2.1) we get: g =

=% -+ 5 and considering the fact that m — q— kandr = g — 5, it results
that m —s and 7 -~ % and thus,

Q=AW Wy, .., W, Ty, T ..
Ve {Vl’ Vz’ I VEJ Ul: Uzy ofts

T, with yo[‘m IS

4 Dot
UG ={ay ay ..., e} (38).

Remark 3.8. Practically speaking, the determination fo a basis

for the subspace Im v, goes down upon the discovery of a set § < é,
free related to Im V and inaximal with this property. According to it,

the construction of the vectors ¥ M, yey, Y& uniquely determined as
compared to &, is imediate if we have in mind the remark 3.7.
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Remark 3.9, From the above mentioned thus we notice that if
§ = @4 is free related to Ker A and maximal with this property, then,
|§| = m = dim ImV = rank (A), and if § < & is free related to Im ¥
and maximal with this property, then § = £ = dim Ker A.

LEMMA 3.1. If acais free velated to Ker A, then there exists S’a- cq,

free velated to Ker A and maximal with this property, so that adcg q

Proof. Let a = @ be free related to Ker A . If a is maximal, then
we take § 5= @ and the theorem is proved.

If & is not maximal, then there exists at least an arc a = a\é SO
that & U {a} to be further on free related to Ker A.

Since & < @ and @ is finite, it means that there exists a finite num-
ber of arcs, be them & = {E,'l, E,‘,, el “—'}}' aca g[, so that @ Ua

to be free related to Ker A and for any a < a\(a U @), the set a U
U @ U {a} has no longer this property. In this case, if we take &z =

—d U a, it results that & F is free related to Ker A, maximal with this
property and d < 8. (QE.D.)
LEMMA 3.2. If@ < @ is free velated to T V, then there exists Jé c g,

Jree velated to Im V and maximal with this property, so that acs g
~ Proof. Analogous to the proof of the lemma 3.1.

3.1, it immediatly results that if & < @ is free related to Ker A and
|@| = m, then & is free related to Ker A and maximal with this property.
Similarly, if @ < @ is free relatet to Im Y and |§| = k, then, agcording
to the lemma 3.2 and the remark 3.9, it results that the set & is free
related to Im V and maximal with this property. According to the rela-
tion (2.1) we have also got: ¢ =k + m. (3.9)

THEOREM 3.6. If & < Q is free velated to Ker A and maximal with
this property, thew AN_§ is free velated to Im V and maximal with this
properiy. -

Proof. Having in mind the remark 3.9, it means that |J| = m and
thus |@\_§| = % (see the relation (3.9)).

Let us prove now that the set @\_§& is free related to Im V. With
this purpose, let us consider Y € Im ¥/, arbitrary, so that @(Y) < a 8-

k )
If A(Y) <@\ it means that Y = > y,V, withy, € R, a =1,2, ..., %

=1
Taking into account the inner product within the linear space V[4, R]

(see [17]) and using the results obtined within the paragraph 4 in [171,

"Remark 3.10. Taking into account to the remark 3.9. and lemma
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we get: _[X[a}lYl] :9, for all «=1,2, ...,k But, 0 = [XE|Y] —

m k
:[Va +‘§x‘gﬂ UﬂLgya Va]zya, foralla=1,2,..., % and thus YV =8,.

"cl;)hlIsmfaét_ leads us to the conclusion that the set > & is free related
- Consegue_ntly we have &\ 3‘.free related to Im V and AN T =k:
;;10 5;(1,511(: c1rc.umsta,nces, according to the remark 3.10, the theorem is
THEOREM 3.7. If § <= @ is free related to Tm V' and maximal with
this property, then A \_§& is frec velated to Ker ; ; ;
o fi er N\ and maximal with this

Proof. Similar to the proof of the theorem 3.6.

Remark 3.11. The theorems 3.6 and 3.7 allow us to assert that
tl.le sets § and & make up a partition of the set &, and, therefore, accor-
ding to the remark 3.7 we have got the followings : § = {U,, U,, .. M U-} =
=W W o Wit and § = (Vo Vs, ., Vi) = (T4 T, ..., T3,

Remark 3.12. Taking into consideration the remarks 3.6 .';8 and
3.11 we may assert that the moment a bases has been deterr’nin‘ed for
Ker A we automatically have a bases for Im ¥ as well, and, reciprocall
having determined a bases for Im V we implicitely have a bases for Ker AY

THEOREM 38. Let @, < @ be free related to Ker A and &, < @ frec‘z
related to Im V/, so that @, M Qs =B. Under such circumstances tk-r;re exist
g < Q free related to Ker N and maximal with this property and § < g
[free related to Im ¥V and maximal with this property, so that A, < & and
a, < §. ' -

Proof. Tet us suppose that @, | 4, = . Accordin

€t = 4. ng to the lemm
3.1 there exists & a, S @ free related to Ker A and maximal with thiz
property so that 4, = & ay and according to the lemma 3.2 there exists

Tq, g*a free relatet to Im V and maximal with this property so that
a4, = § @,

But, according to the remark 3.11, we have Ta \UTy = a and

i ] - ] ! . 1 2

To, M g, 7 @ ; which obinously leads us to g, = 4, and Fq, =y,

where, taking § = &, and § — d,, the theorem is proved. I,et us suppose

now that @, {Ja, C d and let g — {4, a4, ..., 4;}=a — (@ U a,) be

2 ’ Ty 2 .

We shall prove now either that @ a,} i
] . 2 4 1s fr 1
that @, |J {4} is free related to lIngj {V} verath B Jesh Ay pr

For this purpose, let us Suppose now, against all reson, that @, U

d,‘- i 3 - £ o .
tL(')J Elﬁ} vls not free related to Ker A and @, U {@;} is not free related

Under such circumstances (see the definition 3 1) th i
1 ere exists X
S Ker A, X #0g and Y €eIm v, Y # 0q, so that a(X) c a, U{dj

5 — L'analysc numérique et la théorie de I'approximation Tome 10, nr. 1 1981
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= %i,d; ; d Y = yya;, + }: Yo,
aly) c a, U {a;}, where X = x4 —l—a ;,&lxaaa an 2

i i # 0. !
w1th1_%£vzén . izrlln(‘i,ig:xlz The inner product of Vi{d, R] (seEt [117-]> [?E]ll(}]uil%g
the results ZCD;)btained in the paragraph 4 from [17],_ we oy\ a r:l .] A 7&0?
which leads us to 0 = [X|Y] = x;, &, + 2, xaaalyﬁaill 4+ 2 Ypla i Vi,

aped,
i i 2} is free
icti ther @, U {4} is
tradiction, and therefore, ei ;
W'letgé?tt (;chllzseraAcogr s U {a,} is free related to Im V. \ﬁf]e szall {I;u}
f;[l% i @, U {a.} i’f a, U {4} is free related to Ker A and 43 '= 4, J{4,
1 — 1 2 1
i ‘ i} 1s free related to Im V. e )
& &2BU 2“ ;}imilar reasoning we can show that Q'] U {a,} is frcid%relatzd
by | as’’ \J {a;} is free related to Im V/, similarly building up
to Ker A or 9 o i 18 i ity 45
one of the sets d; = @; U {4} %1; ;rf ﬂ; Sze ), al[f]zand agg] i
i just this way, we obta :
g)milg2 N Jlj; al” = a,, af’! = @,, for which @) is free related
g = 1 ) v e ’ 1 T 3

: ) qlel — g
e a[f] m &%g] La @, al U 5 ,
G al¥ is free related to. Im Vv, Q) ) . ad
2) Iielé%,anii Ay, < @¥’; so we find the hypothesis o[fg] the flrtsl;c part (i)s
P sl ’ g — rem
tlie den;onstration, where teaking § = al and § = alf!, the theo
i the
e 3.8 represents an extension of
. The theorem 3. P .
the r%nc;sm3a6r 1;11(31. 1?? 7. Practically it’s a stronger representation of these
0 ; 7.
A L 1
e 'zhe(())flerilﬁé free sets related to Ker A . Within this %artagrl?ﬁ)gl sﬁﬁs;k;ie
give a theorem who characterizes the free sets related to
] f
Tl 1 h 7 (see [17]) a sequence o
i cycle of lengt .

+ {)Eigji?slo&“l.;j ‘Ze & n,-y) and a sequence of # arcs \{n;h s1gr;
4 2% 139 3 74 ‘: AL
(e1an,, cot, &,a;) where g;= 1 or —1, so that for each j :

AS1Ykys )ttty y

we have: (A‘(akj), if g =i,

A +(akj), if S"- = 1; and nij = A +(akj)’ if g = —1.

" T ey i o= — L,

;) i t of arcs by @(wln,)).
e s aMCZC%G LbZt QQ[ZO]éI,ang ;tsﬁsebe. The set £ is ﬂe(;z related to
THE?‘R;nd o;/pl.y if theve is mo cycle w[n] so that d(w [n])dgl sl g

e %;OZf Let £ <€ @, £ # O be, free related to Ker A and le P
] yele with d (e[n]) < & _

i ik (;15(:3 (;}g’;illiens(jc) [Zl]l reason that there exists a cycle fm[n] [V;I17t]h
Ao [X‘S)e iu?a]i Oy « oy @} < £ According to the lemma 3.1. from )
5 i i aX) = alex]) < %

the vector X = »  ;a; is ponull in Ker A, and as a(X) (

-= . . a2 . to
it means that .Sijis1 not free related to Ker A ; which is contradictory
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the above — stated hypothesis. Reciprocally, let us suppose that there
is no cycle w[nr] with WNwln]) = & and let us prove that £ is free related
to Ker A. Against all reason We suppose that £ is not free related to
Ker A which leads us to the existence of a nonull vector X = Ker p,
with Q(X) < ¢.

™

According (2.2) the vector X is of the form X :Eai)?,., with « <
i=1

R — {0} and X,. elementary in Ker /A, and X’i =X for all § — 1, 2,

«-., m. Because X ;1s elementary in Ker A, then, according to the theorem
3.3 from [17], it exists a cycle w[#n] with w[n]) = {ar, ap, ..., @, }

so that X, = }: €@ But since X, 5 X and A(X) < £, then aX)c ¢
=1

- i
and, thus, there exists g cycle o[n] with Aw[n]) < £; which is con-
tradictory to the above — stated hypothesis.

5. On the free sets related to Im /. Within this paragraph we shall
give two theorems to characterize (from the point of view of the graph
theory) the free sets related to the subspace Im V.

DIFINITION 5.1, Let &t (gt o #0. We call section (see [17])
induced by 9* a set of arcs with sign § — {e1as,, Callhy + o o5 Sy} (g = -1,

=12, . ), so that for any ay, I 2 ..., % one of the following
relations is verified :

a) A +(akj) < J* and A*(a,,j) € N JH, if g =1,
b) A_(ﬂk-’) s and VAN +(akj) < $l\<9(*, if g = —1,

the set g* — {ay,, ar, ..., ak’} beeing maximal (related to the inclusion
of sets) with this property.

THroREM 5.1, Let £ < a & £ be. The set € is Jree velated to Im v,
f and only if there is no section § with a* < ¢,

Proof. Tet ¢ < a £ 2y be, free related to Im V¥ and let us prove
that there is no section § with @* < £.

Against all reson we Suppose that there exists a section 8 = {e,ay,
€28k -, €4y } with g* — {@h, @pyioais, ar} < €. According to the theo-

fem 2.1 from [17], the vector Y — X
=1 —_ i=1

AQY) =a* < ¢ it means that £ is not free related to Im V ; which is

contradictory to the above . stated hypothesis.

Reciprocally, let us Suppose that there is no section § with @* < ¢

and let us prove that © is free related to Im V.

Against all Teason, we suppose that € is not free related to Im v,
which leads us to the existence of anonull vector V & Im v with ay) c ¢

&ty is nonull in Im V, and since
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According to (2.2), the vector Y is*of the form Y = ; B, Y, with B, ENR —

— {0} and 17_. elementary in Im ¥/ and Y’i gl_/ for all 1 == 1,2, ..., m.
If Y, is elementary in Im ¥/, then, according to the theorem 2.4 f_rom
{171, thére exists a section & = {e; @y, 3%, ..., s,iak”_} so that Y, =

?

= 4+ i gj . But since Y, EY and 4(Y) < & then 4(Y,) < &, and, thus,
1) ; =
j=1

there exists a section 8 with @(17,.) — @* = £; which is contradictory to
the above — stated hypothesis.

DEFINITION 5.2. We call chain with the length 7 (see [1773.))f2(;1md
the node » to the node m a sequence of » 4 1 nodes (n,, #;, ..., % Fi
a sequence of » arcs with sign (e,ap, sza,?ﬁ, A s,ak'), where #;, = n, n; =
=m, g5 =1 or —1, so that for every j = 1,2, ..., 7 we have :

Ay, if g5 =1,

" if 5 =1
A i T A flay), if g = —1.

= : and
"ia T A (a) i g5 = —1,
Particularly, a single node (and an empty sequepcelfof arcs) is regar-
ded as a chain with the length zero from the nod to 1ts<>j ; . bt
We denote a chain from # to s by y[#,m] and its set of arc
arcs by d(y[n, m]).
DL};,IaIN(;YTION 5.3. Two nodes »# and m are mutually conmected (se_t(a1 [1t615])
and we denote this by # ~ m if and only if there exists y[n, m]. E1v1 enﬂzy,
~" is an equivalence on ? and induces a partition in the clases 2,
5?2 N, called connected components (see [16]). R
| rEEOR: € € Ry, My, ..., ST, the -
THEOREM 5.2. Let £ < &, £ # @ be, and &K, o I
ted ci);;(());{ents of the graph G = (I, @). If the set £ is free reéat‘;%i totki};z
subspace Im ¥/, then, for all i< {1,2, ..., s} cmgl_‘ for any n, m )
exists a chain y[n, m] with A(y[n, m]) < A £ | A g
Proof. 1et £ < 4, € # @ be free related to Im V, 4y € {1, 2, h, )
arbitrary fixed and #, m & ;. We denote by @)([,?é),,? tl.xe set of all ;chebcC ;llze
from the node # to the node m. Evidently, 9, is not empty be
nm < gcin' (0] €
Against all reson we suppose that for any y[n, m] € D we ?aa‘;t
not d(y[n, m]) < a>_§, which leads to the existence of an are (at em]
one) a = & for which a € d(y[n, m]) and @ = €. Let us consider y,[7,

0
in, 4 014} g 191 11 its set of arcs and {ak
such a chain, Q(y,[n, m]) = {a,", @, -.., %, } ;

: (0] n, m])
apl ... ey < Afy,[n, m]) the set of arcs hrwhdl%”EaWd
and a};’] =g i=12, ..., 4.

1
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0 3 0] —
A *Haft), i ot =1,

We define #[% =

and we consider the vector
—(@lo)) if glo] — __
j A (aktj), if E'j — 1

Z = Eno[g.], vector which obviously belongs to V[, R].
=1

Having in view the construction of nof(;] and A we have:

“
=1

H
i ,10] [0j _[0]
- EA;:” @y, = Z &; Ay, - (5.1)

i=1

’

U
Putting YV = 2@[;” . a,E:’: we have, according to (5.1), Y €Im v
=1

Y # 6g, A(Y) < € and subsequently, € is not free related to Im Vv :
which is contradictory to the above-stated hypothesis.

Therefore, if £ is free related to the Im ¥/, then, there exists Y, m]e
e@&mthtmﬂ%nga\E¢QEm

6. Matrix associated to the free sets. Let us consider § < 4 a free
set related to Ker A and maximal with this property. According to the
theorem 3.6, the set § — @ . & is free related to Im V and maximal with
this property.

According to the theorem 3.7 and the remark 3.8, if § is free related
to Im V and maximal with this property, then, we can construct the
vectors Y YR Yiml \which form a basis for the subspace Im V/.

Because the vectors DAL Il o Nl b0 e i belong to Y{a, R], they

may be written as a linear combination of the vectors ay, s, ..., a, which
means that there exists a matrix Q — Qu), p=1,2, ..., m; t=1,2,
-+, ¢ (matrix with % rows and ¢ columns) so that we have :
q
Y =304 0a,; B='1,2, .. .in (6.1)
t=1

Having in view the way the vectors YIf], B=12 ...,m, have been
construct (see remark 3.7) we can assert the fact that Qp = {— 1,0, 1},
for all p =1, 2, ceamt=1,2,...4.

Considering another pair (87, §) of free maximal sets related to KerA
and Im vy respectively, we obtain another basis Y, g = 1,2 e, T,
for the subspace Im Vv for which we have, according to (6.1) another ma-
trix Q.
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1eMMa 6.1, If Q and Q are two matrices associated to the bases Y],
vy, p=1,2 ..., m, then, there exists a square matrix T', so that Q = I'Q
and det (I') = +1. Sl L

~

Proof. Writing Y®] as a combination of the vectors Y®, we obtain:

YO =Y T Y, 8=1,2 ..., (6.2)
y=1

where ' = (Isy) = 1,2, ..., m, y=1,2, ..., m is a square matrix with
elements in {—1, 0, 1}. : . 3 .
Now, writing Y as a combination of the vectors Y we obtain:

l’[YI - E fYoc i’/[a]’ Y: 1: 21 e o [ohy m’ (6'3)
=1

2, ...,m; «=12 ..., ; is a matrix similar

where = (T',) vy = 1, _
) and (6.3) we obtain:

to I From (6.2
Ym = EFGY ( ﬁvai}[m) = E 2 FQYT‘YM?[G] ==

Because the vectors 17'[9], Pu=r"152, =
according to (6.4) we must have:

"

(2 favr”w)?m. (6.4)°
v=1

., m are linear independent, then,

=1

" 1,if B = a
T St e g 6.5
YEIF‘*YFY“ = % = {0, if B# a (6:2)

From (6.5) we have: 1 =det [(3p) P = 1,2, ...,7; « =12, ..., W] =

= det (Pﬁ) = det (') det (I'), which does not mean anything else but that
det (") and det (IN‘) are concurently equal to 1 or — 1. Consequently,

det (I') = +1. (QE.D.)

ST A =5 "
Rewriting the relation (6.2) we obtain : EIQBt“; =YBl = EIFMY[Y]:
= Y=

o q " 3 ) )1;
= Y T ( ; Qy a,) e ( 7o Tay QW) @, which leads to Qg = EII‘BY Qu,
y=1 1 Y=

= =1 \y=1

ie. O =TQ. (QED) ' .
We denot(e by Dy .1 a subdeterminant of the matrix Q, a sub-

determinant made up with the m rows of Q and the columns 4, ¢, ...
L Q. ' : )
ruroruM 6.1, If the set {ay, @, . . ., a,”T.} is free velated to Ker N\ an
maximal with this property, then, Dy, . 41—y = &1, and if {ay, a, ..., @}
is not free velated to Ker A\ and maximal with this property, then, Ditutune i) = 0.
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Proof. Let us suppose that the set {a, a, ..., a4} is free related
1 :

to Ker A and maximal with this property. According to the remarks 3.7

and 3.8 we can construct a bases from the subspace Im ¥V, using the

set A~ {a,, @, ..., a_}, who is free related to Im VvV and maximal with
| " 1 LI1E

this property. Let us consider Q the matrix associated to this bases accor-
ding to the procedure described at the begining of this paragraph.
According to the lemma 6.1. it exists a square matrix I' so that :

~

Q=TQ and det () = 41" - (6.6)

Because Q =T'Q, then, we can write:

Bty t—1 = det ([) Dy g (6.7)
m "

But, having in mind the way the matrix Q has been defined we may
assert that: '

e I

.which means that (developing alccording thé diagonal line)
5[&.1,,...»"71 = £l (6.8)
From (6.6), (6.7) and (6.8) we obtain: ?D[,I,,Z,,_,_,I] = 4+1. (Q.E.D). Let

us suppose now that the set {a,, a,, ..., a,_} is not free related to Ker A
and maximal with this property, fact that implies that there exists

X = Ex,, a € Ker A, nonull, so that (see the remark 4.2 from (17])
i=1 b
[X|Y®] =0, for all = 1,2, ..., m. (6.9). Rewriting (6.9) we obtain:

wm ™

0= [X|YB] = [; xti %, ‘)t‘-ElQat “t] = };1 xtiQﬂti = / Qﬁti He,

=12, ...,m (6.10)

The relation (6.10) represents a homogeneous linear system of # equations

with # unknown quantites (the unknown quantites are =, %, ..., %),
m

But, as not all the unknown quantites are null (we have supposed
that the vector X is nonull) it means that the system of equations (6.10)
admits a nonull solution fact that implies: :

det [(Qo) B='1,2, ...,3; i=1,2, ..., @] =9y, ., =0 (QED).

Rem'a rk 6.1. If (3 , &) is a pvair of free éets, maximal related to
Ker A and Im v respectively, then, according to the remark 3.6 we can
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construct the vectors X, o= 1,2, .., k which form a bases for Ker A
and we may associated to it the rr}atrix Q* — _(Q;,) @ = 1*, 28I R,
t— 1,2, ...q; similar to- the matrix Q. Denoting by QD[t,,tg_,...,t?] a

Y . ’ ; -— *
' rminant of Q¥ (subdeterminant. made up with the & rows of Q
Zi%di;eglgélfsgns'tl, 129 (. t of Q*) we obtain, by a similar resoning to
datosty | 1de e following theorem :
that vreviously expounded, the g th
TEIEOREM 6.2. If the set {a,, a, ..., “t;} is free rvelated to ImY and

maximal with this property, then DY, . lah, 021 S 41, and if {a,, ay, ..., a.F}
is nol free velated fo Im ¥V and maximal with this property, then,
®§1.-‘|. ----fIJ = 0. . ‘ )
7. Exemple. For the graph G = (&, d) with & = {1, g, ng, ny, ng,
#y, 1,) and @ = {@; = iy, My, By = (Mg, M), g = My, Ng), Ay = (Mg, Ng),
dm: (g, By), @5 = (Mg, Mgy, @y = My, 11y, Ay = {Ng, Hy), Gy = (N5, Ny)
clﬁ = My, WP, G — (ng, #,)} the set & = {a, = Ul:_ g = Uz; 4y = Us,,
aw: U, @y, = Ug} is free related to Ker A and maximal with this pro-
pserty ; the set§ = {ay = Vy, 45 =_Vz: @y = ng ag = Vi, a5 = Vi, a;0=Vg}
is free related to Im V and maximal with this property.
8. Conelusions, The results of this paper and [16] — [18] represent
a generalization and an extension of those obtained in [1] — [13]. More
exgctly: in [1] — [13] is developed a theory in the particular case when
the graph is connecled ; in our paper and [16] — [!8] we consider and devz—
lope a theory in the general_case when the graph is not mecessary connected.
Evidently, the results of [1]—[13] become .natura}l consequences of what
we got in [16] — [18] and this paper. It is obviously to see that for a
conr%ected graph G = (&, d) a set § is free related to Ker A and maxi-
mal with this property, if and only if & is a spanning tree 9f G. (§ee
tl] — [13]). Similarly, a set g is free related to Im VV and maximal with
this property, if and only if & is a spanning cotree of G. (see [1] — [13]).
Moreovér, Ker A is the space of cycles and Im V the space of cocycles. (see
[1] — [13]). Indeed, from [16] and (2.1) it results:

dim Ker A =g — p 4+ s,
whete s is the number of connected components of G. Hence
dim Ker A = v[G],

' is the cyclomatic number of G. (see [S]). '
gcl)l e1:(:cvo[r((;ljin;;‘S to rerjr)larks 3.6 and 3.9 we obtain: ¢f § is free velated to
Kér A and maximal with this property, then

|§| = rank (A);
if g is free ;;glated to ImY and maximal with this property, then
& = v[G].
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But, if G is connected, e.g., s = 1, then, according with [16], it results:
gl=p — 1,

e.g., & is a spanning tree of G. (see [1] — [13)).
Similarly, if G is connected, then

Tl =61 =gq—p+1,

e.g., & is a spanning cotree of G. (see [1] — [13])
Evidently, in our general theory from [16] — [18] and this paper, if G
is not connected, then every spanning tree is free and maximal related
to Ker A, but reciprocaly is mnot true. (see exemple 7). Similarly for a
spanning cotree. Look, what for is necessary a general theory when the
graph G is not connected.

9. Opened problem. A research concerning the link between the Sree

sets (introduced in this paper) and the independent systems from matroids
theory.
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