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1. Let Zu, be a given infinite series with n-th partial sum s,. Let
A= (au) k=0, 1,..., n; n=0,1,...) be an infinite matrix of real
numbers. We denote by 7, the A-transform of the series Xu, where

(1.1) T, = Ea”k 5 (=201, NN
=0

Let f(£) be a real periodic function with period 2w, and itegrable
(L) over (0, 2m). Let the Fourier series of Jf{t) be given by

(1.2) “? + 27 (@ cos mt + B, sin ) = D0 A4,
n=1

n=0

We let £,(x) be the A-transform of the series (1.2) at ¢t = «.

If {$,} is a sequence of real numbers with B = E Pu(Po > 0) and if
r=0

£ (O T
(1.3) P
0 (& > n),
or
[2 <,
(1.4) iy

Py
l 0 k > m),
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the A-transform of » . A,() is called the Norlund transform or Riesz

transform re"s'p:'eéfix'/ely.‘ B ooy , ‘
Throughout the paper we shall write

k "
(15)  dw=3a,(k=0,1,...0;n=0 1, )5 g =Dy,
r=5

=0

(16) a_n(k) == a-nk;
(1.7) Q) = = {flx + 1) + flx — 1) — 2/(x)}
and

(1.8) C*[0, 2xn] for class of ‘a continuous periodic functions on (0, 2x)

with period 2.

(L.9) Let N,(x) and R,(x) are the Nélund and Riesz transforms of the
series (1.2) respectively.

2. In attempting to generalise a result of ALEXITS [1] concerning
the degree of approximation of a function f € Lip a (0 < a< 1) by Cesdro
meauns of the Fourier series of f(x), HOLLAND, SAHNEY and TZIMBALARIO
[4], and ‘prEMcHANDRA [2] proved the following : K B Ry :

THEOREM A" Let {p,} be a non-negative monotonically. non-increasing
sequence of real numbers. If w(l) is the modulus of continuity of fe
e C*[0, 2r], then

n ol Pro(i) | .
{Pn I; & i

THEOREM B. Let {p,} be a real, non-negative, monotonically non-decrea-
sing sequence of real numbers with P, = .00. Then for a 2n periodic func-
tion f < Lip a (0 < « <.1) we have : '

max, |f(%) = Nu(x)| = O

O<r<2m

o) 0<a<1),
olsnxas}in () = Rilx) | = Oéii:;}p_)”} (a : l).:
Py e,

Our object in this paper is to obtain estimates for max |f(x) —
2l ! . O<x§2n
— Iy(%)| when the entries of the matrix 4 — (@) satisty einther a,, <
S (h=0,1,...; =01, o) or ay = A1 (B =0,1, ..., n=
=0,1,...). : :
Our main results are given in the following theorems :
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THEOREM 1. Lel A = (a,) satisfy the Sollowing :
(2.1) an>0 (=0, 1,...; 8 =20, 1,...) and @y >0, D a, =1
k=0
(2.2)

Ay = Ak 1 (k = Oyllr RRRETS (4 :OI 1; . -)1

”
3 positive constant a such that 2 > a
k=1

(2.3)

Then for f « C*[0, 2x],

(2.4) E,(f) = max |f(%) — £,(x) | = O ( Z o(1/R)ay(h + ﬁ)

0<a<2m =1 %

where w(t) is the modulus of continuity of f(x).

THEOREM 2. Let A = (a,3) satisfy (2.1) and
(25) Aup—1 < A 1, : (k :Il, oo n)

Then for f e C*[0, 2xn],

2l
(2.6) max |4,(x) — f(x)| = 0(@(%)) +0 (é m( k ) ﬂﬁ,n;k)-

BTy k

A generalization of Theorem B is the following :
THROREM 3. Let A = (a,;) satisfy (2.1) and (2.5). Then for f & Lip «
0 <a <), ? Ay

0<a<1):

O((#nn)®)
Jhax i, (x) — f(x)] = 0( tun log L)

Ann

(2.7) (0= 1),

It is easy to observe that on taking a,; as in (1.4) we have Theorem
B from Theorem 3. ' ‘
Remark If f(x) is every-where continuous then from Theorem
1 and Theorem 2 we conclude that the 4-transform of the Fourier Series
of f(x) is uniformly convergent to f(%), If (a,;) is the matrix of arithme-
tic means then this conelusion is obtained from Fejér’s theorem (See
(7] p.p. 89 (3.4)). : .
3. We shall need the following lemmas for the proof of our theorems.

venMa L If {au} satisfies (2.1) and (2.2) then for © — - J

(3.1) 3> a4, sin (k an )t = a,(x)
k=0. '2

with a,(x) defined by (1.5) and (1.6).
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The lemma follows by .using arguments similar tothat of mc FADDEN
[6 p. 182].
‘LEMMA 2. If {a,} satisfies (2.1)" and (2.5) then

(3.2) k;,)a,,k sin (k + ;) :0(%)

t
This can be proved by ﬁsi_ng Abel’s lemma.

LEMMA 3. Let (aw) satisfy (2.8) Then for + — [ﬂ

i
1 1
2 @ sin (k + ~)t = O(@nn_s),
k=0 2 |
where
LA S {
a:;k IV 2 Qyye
r=Fk

Proof. On subdividing the sum from & equals zero to #» into two
parts we get

ia,m sin (k+i’t— (Z+ E )ank sin [k + )t: S, 4+ 3, say
k=0 2

n—t+1
Clearly
Z2 = O(a;t,mﬁr)‘
Since a,, is non-decreasing in Z,

2, =0xa, . ).
But

"

Tt = (T + 1)a'u.u—r < E Apy = a;;,n—r-
f k
implies
2= 0an5—s).
On collecting the estimates for %, and X, the lemma follows.

Proof of theorem 1. Since ®(f) < w(f), and sin¢/2 > ¢/n' (0 < ¢t < =),
we have

max | f(x) — £,(x)] < max I, + max [,

(FLT<] 0<r<2m 0<sL2m

where

/n

© - b o 1.3
4.2) I = S%”Ea,,kmn!\kﬁ—glﬂﬁ

0
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and
b n
1 ; 1
(4.3) ! ‘ Ea”k sin (k +- — )¢ dt.
T k=0 2
Tr

By (2.1), (2.2), (2.3) and some calculation we get

5o ) =ofe2) o

since by (2.2) and

(4.4)

k=1

(4.5) max I, = 0{

0<2<2n

On collecting the estimates for I, and I

" m(%] au(k 4 1)

(2.3)

n

2

k=1

=) ayie
‘“(k)an( + 1)

k

k (n) ; ( s 2) a1 2 aw(l/n).

By Lemma 1 and the fact that d,(x) increases with ¥, we have

H

7( []dt

n/(k+1)

:0: el }111,

Proof of theorem 2. Observe that by Lemma

(5.1) § )

n/n

:0(:5

since w(t) and a,,_.

Following the method of
timate (4.5) by (5.1), we get

max |f(x) —

(B2

Eank sin k -+ )

=1 i1

™

wlk
j 204, dt) (2

are non-decreasing functions of #.
proof of Theorem 1 and replacing the es-
(from (4.1), and the fact that

-0l )
022 n

i =0fof ) ol

3

()

«©

E

L
k

of T afz)a

a=of§ 4, a)-
T/n

’
an,n—k) >

|

4
“n,n—k) .

|

2 Theorem 1 follows.
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86
Proof of theorem 3. Since O(F) < w(t),
(5.3) oﬁr,lifJ f(x) — tu(=)] <ofle§nll +0r<r;egﬂlz.
where
: _ | ey in (} is‘dt
(5.3) I = (E . ;}a”ks1n(c+2)
and
(e SNy G ih g L t‘dt
(5.4) I, — g 015> sin ik + L)

nu

y (2.1) and the fact that w(f) = O(t*), we have
(5.5) 1, == O(ay,) for 0 < a < 1.
By Lemma 2 and o) = 0(*), we get
for 0 < « < 1,

4 O(@)
(56) 12 =0 (am; S foe—2 dt) = 0‘,“”” log L for o« = 1.

ann 1 Ay

1 follows.
2), (5.5) and (5.6) the required result o
(I; 1’O(I)Itlr(sres)l’ﬂt(s ce)ln be Lgsed to obtain many results by specialising the

matrIISXy fét‘cing A to be the Nérlund matrix in Theorem 2, we get Theo-

rem A. —
Remark. 1. It must be mentioned here that we Callcl 1'1é)t1182—
tain Theorem A from ‘Theorem 1 since althou.gh {p,,} is (rinono 0111111 o
increasing, {p,_./P,} considered as a sequence in & is non- ecrez;s vgni o
i é Irioy ’viev:;_of tlre above remark it is clear'that Corollary_ 2 ‘Sh 1}1‘;;{‘ i
I0LI Z.XND and samngy (5] can not be derived from their eo
N N N . 0 5].
claimed in page 231 of their paper [ o ] )
Let (a,) be the Riesz matrix or the (N, p,) matrix (See 131),
we obtain the following result:
THEOREM 4. Let {p,} satisfy

(6.1) P z0m=1,2 ..., 06>0, pu = pura(n=0,1,...).
Then for f <= C*{0, 2x],

(6.2) max | f(#) — Ryf#)] = 0] 20 ————

O<x<2n
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Remark. It should be noted that Theorem ‘B does not cover
the case p, > pp,y(n =0, 1, -..). Our Theorem 4 yields an estimate for
this case and thereby complements Theorem B. Tor the sake of demon-

stration, if in Theorem 4 we take Dy = i, P, ~logn and write L,(x)
n

for R,(x) then we shall obtain
COROLLARY. For f(x) = C*[0, 2], then

1 m(i]log (& + 1)
max |f(¥) — L,(x)| =0 | L_S>_tel =7 " 7

A
0<x<2m logn r=y f

If flx) sLipa (0<« < 1) then we state the following Corollaries
from Theorem 2:

COROLLARY. (See [1]). Let f®) € Lipo (0 < o < 1) and o,(x) be
the first Cesdro mean of the Fourier series of f(x). Then

O(n-=) 0 <<,
(65) 01:1:‘1;1<X2n|6u(x> —f(x”: 0 ( log ”) (O( — 1)

We are grateful to Prof. Prem Chandra for his remarks concerning
Lemma 3.
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