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1. Let X be a compact Hausdorff space, M (X) the setof all Radon
measures on X, M, (X) the set of all positive Radon measures on X and
M1(X) the set of all u in M, (X) for which (1) = 1.

DEFINITION 1. We say that the comvex come S C(X) is separable

if there exists a countable set H (C S such that S  H, the closure being consi-
derved in the uniform norm.

EXAMPLES. a) If M C C(X) is a countable set, then the convex cone
generated by M is separable.
b) If X is metrizable, then every convex cone S C C(X) is separable.

Let S C C(X) be a convex cone. If p, v are in M(X) write w<g v
if p(s) < v(s) for each s in S. This relation is clearly transitive and reflexive.

For x in X let ¢, be the evaluation functional at x. Tet S be the set
of all lower semicontinuous functions f: X — (— o, + o] for which

(1) ¥ € X, peMi(X), p <se, = u(f) < f(#)
(Concerning these functions see [3], 4]).

Lest S be the set of all functions in S for which

(2) ¥ € X, p€M(X), p <s2 pls # s = 0(f) < flx)

EXAMPLES. a) Let X be a metrizable compact convex subset of a
locally convex space E, and let

S={mio (b, ..., B):n &N, &y, ..., h, = (E* + R)|,.
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Then S == {f: X = (—, too]:f a ls.c. concave function} (see [3]),
and § = {f: X = (—o0, Jo0]:f a lsec. strictly concave function} (see
the lemma in [7]).

b) Let # be a nonnegative integer and let S Cla, b] be the cone of
all continuous nonconvex functions of order n. If g € Cla, b]is a con-

cave function of order , then g is in S (see [8], theorem 1.
9 Tn the example a) above S and S are disjoint.

proposrion 1. If S C C(X) is a convex separable cone, then SN S
s nonvoid.
Proof (see [3], [4]). Let s, bein S, s, # 0,such that S C c1{s,: nin N}.
201 "o . G 4
Then the function f =2, i “Z-u is. in SN S.
n=1 "
Tet SC C(X) be a convex cone which contains a function s >0,
and let p be in M, (X). A map x— T, of X into M, (X) is said to be
a S — dilation with respect to . if for every f in C(X) the function x —

— T,(f) is p-measurable and for every s in S the relation T,(s) < s(%)
holds a.e.p. (see[8]). Let uT be defined by

3) wT(f) = { TNdu(), | f in O,

X

reMMA 1 ([3]). Let S be a convex cone which contains a function s>0,
and suppose that S 1S min-stable. If w and v are in M, (X), v<s s then
there exists a S-dilation T with vespect to u such that v = pT.

prOpPOSITION 2. Let SC C(X) be a conmvex separable cone, W, v "
M, (X), v <sp, fm 5N S such that v(f)=w(f). If T is a S-dilation with
respect to ., for which w1 = v, then there exists B C X, w(B) =0, such
that T,ls = s for each % m XN\DB.

Proof. 1et s, be in S such that S C clfs,: #in N}, and let ¢, be in
S such that ¢, — /. Then there exists A C X, u(4) = 0 such that for every
x in XN\ 4 and every # in N:

(4) Tt) < 4(%)
(5) T,(s,) < 8.(%)
From (4) it follows
(6) T.Af). < f#), % in XNA.

Since p(f) = of) = pT() = § Tf)du(x), we have

9 [ 7undptn) = § F(@)d()

X
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From (6) and (7) we deduce
@) TAf) =f(=) a.c.p.
From (5) it follows T,(s) < s (#)for each sin $ and x in X\ 4. Thus
9) T, <5 &g, for each x in X> 4.

From (8) and (9) it follows that there exists B (C X, u(B) = 0, such
that for every x in X\ B we have T,(f)=f(x) and T s in §
% =T 2 S5 B >
thus T,|s = ¢,/s for each x in X\B(,f)q.ej.t(g.) s TR >
THEOREM 1. Let S be a convex separable cone wich contas 4
s > 0. Suppose that S is min-stable. If p is n M(X), 0 ;%SS ﬁfﬁzi&wg
then w(f) > O for every f in SN S. ’

f’roof._ Since fis in S, it follows p(f) > 0. Let u(f) = 0. We have p =
= p* — p~ where p+, p- are in M, (X) and w- <4 pt. Then there exists
a S-dilation T with respect to w+ such that p— = p*T (see lemma 1).

Since p=(f) = p+{f), from proposition 2 we deduce

T,s =¢ls aepr If sisin S, then

pm () = wrT(s) = { Tus)dur(x) = | e(s)dp+(x) = (o).
X X
Thus w(s) = 0 for each s in S. So p|s = 0, a contradiction.
COROLLARY 1. Let X be a metrizable compact convex subset of a locally

convex space, and let S be the cone of all continuous concave functions on X.

If A, varein M(X), N <gv, N # v, and if f 1 ' s
i e e A s< oy , if [ is a strictly concave continuous

Proof. 1t suffices to apply theorem 1 for p =v — X
COROLIARY 2. Let S ( C(X) be a comvex separable cone, w in M, (X)

and T a S-dilation with respect to p. I, = 3
w. If pTis = then th ts B
w(B) = 0 such that T,|s = &,|s for each x mSX\%S. iR Sk

sitiofyZO,Of' Tet fbein S M S. Then pT(f)=wu(f), and we can apply propo-

Let S C(X) be a convex : L i i ini
1 atlieh 9 ) cone. We say that p in M, (X) is a S-mini-

(10) v & My (X), v Sspo = Vs = s

s S}?et w be in M4 (X) and f: X — R. Denote Qu(f) = inf{u(s) 1 f< s =

G. MOKOBODZKI [6] has obtained the following ch rizati [
the S-minimal measures g-elatatiepgation o
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PROPOSITION 3. Let S C C(X) be a convex cone which contains a fumc-
tion s > 0. Then pin My (X) 1s @ S-minimal measure if and only if Qult) =
= u(t) for each t in —S.

Trom theorem 1 we will obtain:

COROLLARY 3. Let S (C C(X) be a comvex cone which contains a fumnc-
tion s > 0, and suppose that S is min-stable. Let p be in My (X) and ¢ in
—(SNS). Then p.1is a Sominimal measure if and only if Qu(t) = *(2).

Progf. There exists v in My (X), v<s @ such that Qult) = v(¥) (see
[3], lemma 1.3). If p is 2 S_minimal measure, then v|g= uls; it follows
s = vls (see [4], prop. 1.7). Thus w(t) = v({#) = Qult)s anat,

Let now Q.(f) = u(f). By Zorn's lemma, there exists a -m1n1rn73
measure ) in M, (X) such that A <gp. Then Af) = ulf) (see [4], prop. 1. %
It follows Qu() = w(f) < A(t) < Qulf). Hence u(t) = A¢). By theoresm ¥
(@ — N|s = 0. Thus pls = As and we deduce immediately that @ 1s a S>-mi-
nimal measure. gl A R i

3. Tet Q be a metrizable compact space. L€ i —
positive linear operator such that 7% = Tand T1 = 1. Denote H = T(% (Q)):
"Then the subspace H contains the constant functions and H = {h € C(Q):
Th = h}. Suppose that H separates the points of Q. Denote r={fe
< CQ):f < 173 | o

Then T is a closed convex cone in C(Q), and I’ is max-stable. Moreover,
H=TN(-T),andT —Tisa dense subspace of C(Q) (see [9]).

Let T* be the adjoint of T'. If we denote by dH the Choquet houndary
of H, we have (see [9]):

(11) oH = () (x=Q: =lf) = T*e (N}

f=r
¥ ALTOMARE [2] has proved:

PROPOSITION 4. a) There exists a fumction ¢ 1n I such that:
(12) H = {x € Q: sx(ﬂo) = T*Sx((P)}'

' : Af o,
b) Let H be the linear subspace of C(Q) generated by H and o
v are )m M, (Q()(Fj) Ve = WlHe, and v s maximal with respect to <, then
v = U .
Tet now S be the closed, convex, min-stable cone generated by H in
C(Q). Then S contains the constant functions and separates the points of
Q;S — S is a dense subspace of C(Q). Q being metrizable, S is separable.
Then S S is nonvoid.

OSITION 5. Let be in — (SN S); then ¢ €T and OH =
= {xpligg isex(@) = T*ex(@?}‘ If v are i M. (Q), v s and v(g) =
= p(o), then v = W.

Proof. Clearly S C —T', hence ¢ is in 1. From (11), c')H*C {x €
e Q:e(p) = THe,(9)}. Let now % be in Q such that e(¢) = T*e (@), It
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is known (see [9]) that T*e, is the unique maximal (with respect to
<p) measure which majorizes e,. From e, <pT%*e, it follows T™*e,<g¢,.
But ¢ is in S, and therefore T*e,|s = ¢,ls.

Since S — S = C(Q), we deduce T*eg, = ¢, It follows that x is in the
Choquet boundary of the cone I', which coincides with dH (see [9], coro-
ltary 31). Thus % is in JH.

The last statement of proposition 5 is a consequence of theorem 1.

REMARK. If fis in I' and 0H = {x = Q : g,(f) = T*e,(f)}, it does not

follow that f is in—S. For example, let Q = [0, 1], T:C[0, 1] —C[0, 1]
Tg(x) = (1 — %) g(0) + x g(1).

Then H is the space of all affine continuous functions on [0, 1] and dH =
= {0, 1}.. S is the set of all continuous concave functions on {0, 17, and

S is the set of all continuous strictly concave functions on [0, 1]. Let f
be defined by

1 —3x, x in [0, 1/3]
flx) =7 0 , xin (1/3, 2/3)
3x <« 2,/ % in [2/3, 1]
Then f < Tf, hence [ if in I". Moreover, dH = {0, 1} = {x [0, 1]:¢e,(/) =
= T*¢,(f)}. Clearly fis not in — S.

4. Next we use the following notations (X being a compact Hausdorff
space and S (C C(X) a convex cone) :

OsH ={x e X:p e M,(X), u<se, = =g}
k<X, [¥] = {y < X: s = 5,ls}

AX ={x € X:p<s M (X), p <ge, =supp ¢ C [#]}
dSX:{x S X:p, E]VI+(‘X)! “<s €x=>&1-]s=€x|s}

s eS8, M(s) ={x € X:s(x) = min s}
MX = USM'(s) .

DEFINITION 2. Let T be a set of lower semicontinuous functions from
X into (—o0, +00). We say that a subset F of X is a boundary for T f for
each t in T there exists x in F such that {(x) = min ¢.
X

B. FUCHSSTEINER [5] has proved that A,X is a boundary for 7. If
the convex cone S (- C(X) contains the constant functions and separates

the points of X, then ¢sX 1s a boundary for S (Bauer’s Minimum Principle,
see [1]).

DEFINITION 3. A closed subset A of X s called S-absorbent if
(13) ¥ =4, p e Mo(X), p <sc, > p(XNA) =0
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It is easy to verify that the intersection of an arbitrary family of S-ab-
sorbent sets is also a S-absorbent set. For x in X we denote by 4, the
smallest S-absorbent set which contains «.

CLEMMA 2. Let x be in AgX. If there exist sy, s, in S such that s, > 0,
$o(%) <O, then A, is a minimal (with respect to the inclusion) S-absor-
bent set, and A, C dsX.

Proof. We wuse the following notations (see [4]):
(14) T,= Uf{supp p:p = My (X), p <g¢,}
(15) N, = {y € X : there exist a, b > 0 such that ag, <&,

be, <s &4}

It is easy to verify that N, T, C 4,. Moreover, the following asser-
tions are equivalent (see [4]):

(i) 4, is a minimal S-absorbent set

(if) s(y) = s(x)s;(y)for any s in S and any y in 4,

([N gr=n T,

Clearly [#]C N,C T,. If pis in M, (X) and p < ¢,, then supp u C
C [#]; it follows that T, (C [x], i.e. N, = T,. Hence 4, is a minimal
S-absorbent set, and from (ii):
(16) eyls = s1(¥)e,ls for each y in A,.

Let us show that 4, C dsX. Let y be in 4,. If w is'in M, (X) such
that p<g e, then from (16) we deduce wp<gsy(y)e,, hence w/s,(y) <s €,
It is easy to verify that AgX C dgX, therefore x is in d.X. This implies :

17 ol
( ) s1(y)

So we obtain ulg = $;1(3)e,ls = &ls, and therefore y is in doX q.e.d.

==

S

x

THEOREM 2. Let S C C(X) be a convex separable come which contains
the constant functions. Then :

a) 9sX C AX C MgX C dsX, and MX is a boundary for S.

b) if min (s, 0) is in S for any s in S, then AgX = M¢X = dS.

¢) if min (s, 0) 4s in S for any s in S and if S separates the points of X,
then 05X = AgX = M¢X = doX.

Proof. a) Clearly 95X C AsX. Let x be in AgX. By lemma 2, 4,C

C dsX. Let g be in S S (see prop. 1). Then there exists @ > 0 such
that f =14 ag > 0; clearly f is in S

Define the function s by
0, yin 4,.

(18) LS e S e
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Then s > 0 and 4, = {y €X :s(y) = 0}. 4, being S-absorbent, it is easy
to verify that s is in S. Let y be in X and let p be in M, (X) such that
b <gey and p(s) = s(y). If y is in 4,, then y siin dgX ie. plg ='g|s. If
Y is in XN A, then f(y) = s(y) = u(s) < w(f) < /f(y), hence p(f) = /().
Since f is in S, it follows p|g = gyls. We conclude that s is in S. Furt-
hermore A, = M(s) C Ms(X), and this implies that x is in M X. So the
inclusion AgX (C M X is proved.

Let now % be in M¢X. Then there exists s in S such that % is in
M(s). Let w be in M, (X), u <g¢,. Then p(l) = 1. Furthermore s(x) >
(s) = p(s(x) - 1) = s(x). Hence p(s) = s(x), so uls = ¢,ls. We conclude
that #x is in d¢X, ie. M X C dgX.

Let us show that M X is a boundary for S. First we will prove :
190 sES,s]MSX>0=>s>O. :

Let g be in § N_S. Then there exists @ > 0 such that f = 1 4+ ag > 0.
Clearly fis in 5N S. Let s be in S, s|yx > 0. Then s 4 ¢f is in § and
(s 4 ¢f)lugx>0 for any real number ¢ > 0. It follows s 4 ¢f > 0 for any
¢ >0, hence s > 0. So (19) is proved.

Let now s be in S, min s = m. If Slays> m, then s — m is in S and

X
(s — m)lugx > 0. From (19) and from [3; theorem 2.5} it follows s —
— m > 0, a contradiction. So M X is a boundary for S.

b) Suppose that min (s, 0) is in S for any s in S. We will prove that
dsX C AgX. Let x be in dgX, and p in M, (X) such that p <ge,. Lets
be in in S. Denote ¢ = min (s — s(x), 0).Then ¢ isin S and# < 0. Since
% is in dgX, it follows p|s=e,|s, hence w(f) = #(x)= 0. This implies #|spp p =
= 0. So we obtain:

(20) s(y) > s(x) for each y in supp p

Furthermore u(1) =1, hence p(s — s(x)) = u(s) — s(x) = 0.
Together with (20), this implies

(21) s(y) = s(x) for each s in S and y in supp w.

Therefore ¢,|s =¢,|s for each y in supp u. We deduce supp u C[#],
ie. x is in AgX.

c) Suppose that min (s, 0) is in S for any s in S, and suppose that
S separates the points of X. We will prove that d;X ( d.X. Let x be
in dgX, pin M, (X), u <g¢,. Then plg =c,|g. If s is in S, then min(s, 0)
is in S, hence p. (min (s, 0)) = min (s(x), 0). By applying the theorem
2.8 form [3], we deduce that x is in d.X, q.e.d.
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